图分析平台提供商TigerGraph宣布,全球技术和自然科学领域的领先大学丹麦工业大学正在将TigerGraph的高级图分析与机器学习和人工智能(AI)技术结合,以改善急性淋巴细胞白血病的治疗效果。
作为丹麦和瑞典的重大合作项目,丹麦工业大学的研究人员旨在为患有儿童癌症的每个人绘制遗传物质结构图。同时,该项目还是欧盟资助的iCOPE(区域间儿童肿瘤精密医学探索)更大合作项目的部分,研究过程从患者血液测试开始,通过全基因组测序(WGS)与RNA-seq表达数据配对,用于发现与增强子突变相关或可能由其引起的异常表达模式。iCOPE的长期目标是改善癌症儿童的诊断、治疗、治愈率以及整体生活质量。
研究过程生成大量数据,而使用TigerGraph将这些数据与患者的生活、疾病和治疗的各种其他数据点关联在一起,以便在更大程度上了解儿童患癌症的原因,并尽早提供诊断和更有效的治疗。
丹麦工业大学癌症系统生物学系卫生技术系博士Jesper Vang解释说:“我们当前的系统仅包含原始数据,例如基因型和全基因组测序数据。这些原始数据通过自定义管道运行,该管道调用遗传变量并在MySQL数据库中注释数据。但是,我们需要专门为临床人员使用的更轻松的工具,使他们能够查找遗传关联,而这正是图分析的理想用例。”
丹麦工业大学倾向选择能够提供所需性能的本地图数据库平台,他们评估了许多选项,尤其是Neo4j。但评估的最终结论是,只有TigerGraph可以扩展并提供项目所需的分析深度。Vang继续解释说:“在我们的测试中,Tigergraph是唯一提供最高性能并能够扩展到我们最终所需水平的解决方案。”
丹麦工业大学正处于整个系统上线的最后阶段,并且已经在结合AI、机器学习和翻译生物信息学领域的特定项目中使用,以创建可预测急性淋巴细胞白血病治疗中复发和毒性风险的模型。
TigerGraph欧洲、中东及非洲地区副总裁Martin Darling补充说:“丹麦工业大学和整个iCOPE项目的工作具有变革性,显示了创新技术在临床治疗的应用将能够在生命科学等领域获得突破性的洞察。我们很高兴Jesper Vang将在TigerGraph即将举行的Graph + AI全球峰会上介绍该项目的完整案例。”
TigerGraph将于4月21-22日在线举办“Graph + AI全球峰会”。作为图分析领域唯一公开的专业峰会,旨在通过图算法加速实现数据分析、人工智能和机器学习。峰会将涵盖客户案例研讨环节,邀请了来自全球最大企业、最具创新性的初创企业和大学的演讲嘉宾。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。