至顶网CIO与CTO频道 05月25日 编译:新技术名词的不断出现是不可避免的,时下最流行的名词当属边缘计算。专家们用了不同的方式描述边缘计算,还用了诸多用例佐证边缘计算是如何如何地厉害,边缘计算听起来是很棒的东西。甚至还有一种观念认为边缘计算可以替代所有传统的、更中心化的云计算模型。笔者在这赶紧插一句:这是不会发生的。
未来科技环境大有可能是一种同时具传统云计算和边缘计算功能的混合结构。
边缘计算其实是对云计算很自然的互补,不是替代,反之亦然。边缘计算解决了网络延迟限制的问题,而云计算则可以为大量工作负载提供了更快、更便宜的中心式计算和存储。这些工作负载包括人工智能、数据分析和机器学习等等,在当前的COVID-19环境里这些工作负载更是显得至关重要,笔者曾在另一篇文章里“在大流行期间如何利用人工智能和机器学习探讨过这个话题。
未来科技环境大有可能是一种同时具传统云计算和边缘计算功能的混合结构。可以说是真正的阴与阳的关系,两个方面互补调和。
纵观业界,各种科技正在逐渐融合边缘云的强大威力,云计算本身也在朝多云混合支持的方向不断发展。物联网(IoT)、无人驾驶车辆、流媒体以及其他新的行业不断涌现,网络延迟是这些行业的死穴,而对无人驾驶车辆而言,有时甚至真正的致命死穴。
现代云原生、基于消费的、混合友好的云平台的需求只会不断增加,传统IT工作负载也在不断过渡到敏捷云系统。Gartner曾发布报告称,61%企业已经达到了一定程度的物联网成熟度。以下将给出时下一些边缘云的应用场景,这些边缘云大多用于帮助减少延迟及改善零售、医疗和制造业各行业的用户体验。
零售市场里用于跟踪销售、策略和信息的系统的分发方式是非传统方式,非常适合边缘部署策略。据Grandview Research的研究显示,零售物联网市场至2025年将达到950亿美元。零售商必将利用物联网和边缘计算获取更快、更好的客户体验,同时减少产品线及增加收入。后COVID世界肯定将充分使用与边缘云相关的系统,例如自动结帐、产品跟踪、传感器跟踪和供应链报告等等。
医疗领域物联网市场的规模预计至2025年将达到5340亿美元。制药业务当能应对各种挑战,例如库存管理、因法规而导致复杂性增加以及从近端放置系统即时收集和处理数据的可见性问题。
制造业现在可以采取最大限度地减少停机时间、引入传感器及通过局部边缘计算策略监视工艺条件变化等措施以提高了生产率和安全性。制造业物联网市场预计至2024年将超过零售业和医疗保健业的和,达9,500亿美元。
消费和体验期望力度意味着边缘计算的规模和功能会更加凸显其重要性。各种对时延敏感的信息在增多,技术提供商面临诸如微软Azure Stack Edge之类的各种解决方案,Azure Stack Edge解决方案可以完成各种人工智能任务同时也可以作存储网关用。再举一个例子,AWS也增加了Snowball Edge之类的服务,提供的快速数据传输功能令IoT和边缘计算的世界变小了。
其实从许多方面来看,计算一直都是在“边缘”上进行。小服务器及网络几十年来都是在分支机构和远程系统里保存数据和提供存储。要将这些数据整合到IT系统里在管理、延迟以及数据保护和实施成本方面都存在一些困难。而现在,云系统提供了可靠的、敏捷的及随时可用的基础架构和服务功能。
我们在考虑边缘云计算时,务必将其视为整体混合云策略的一部分。边缘计算是对全面云战略的提升,只有全面的云战略才能在物联网设备部署的快速爆炸式增长中稳步发展。
好文章,需要你的鼓励
树莓派基金会调查发现,尽管60%的家长认为编程是孩子的重要技能,但超过70%的家长表示孩子在正常课程中没有学习编程。该基金会CEO指出,随着AI技术快速发展,年轻人掌握技术理解和创造能力比以往更重要。超半数家长认为编程应成为必修课程,并相信学习编程能提升孩子未来职业前景。为填补学校教育空白,基金会呼吁在学校和图书馆广泛设立编程俱乐部,目标到2035年全球教授1000万儿童编程技能。
Patronus AI发布突破性研究,构建了首个系统性AI代理错误评估体系TRAIL,涵盖148个真实案例和21种错误类型。研究发现即使最先进的AI模型在复杂任务错误识别上准确率仅11%,揭示了当前AI代理系统在长文本处理、推理能力和自我监控方面的重大局限,为构建更可靠的AI系统指明方向。
文章介绍了AI大语言模型中最新的深度研究功能,这是目前最令人印象深刻的新功能之一。作者详细解析了ChatGPT、Claude和Gemini等主流模型的使用方法,并重点展示了深度研究功能的实际应用。通过实际测试,作者用ChatGPT 4.5的深度研究功能生成了一份关于1990-2025年最令人厌烦歌曲的详细报告,展示了AI如何通过思维链进行深度研究和分析。文章还提到了语音交互模式将进一步改变用户与AI的交互体验。
这项研究首次从理论和实践证明AI模型可通过模仿生物睡眠-学习周期显著提升性能。研究发现AI训练中存在自发的"记忆-压缩循环",并据此开发了GAPT算法,在大语言模型预训练中实现4.8%性能提升和70%表示效率改善,在算术泛化任务中提升35%,为AI发展指出了注重信息整理而非单纯数据扩展的新方向。