至顶网CIO与应用频道 04月28日 北京消息(文/王聪彬):4月17日,IDC发布了最新的《中国软件定义存储及超融合市场跟踪研究报告,2018Q4》(以下简称“报告”),青云QingCloud旗下青立方Qing³超融合系统和QingStor软件定义双双入选。
其实从Cloud Insight 2018大会上,青云QingCloud就已经发布了9大品牌。横向:一体化架构支撑公私混托四大业务模式;纵向:以软件为中心,提供企业级全栈云ICT技术、产品、方案和服务。
为了企业的成本效益实现最优,青云QingCloud的“公私混托”使用一套架构、统一交付,以达到一致的体验。2018年中国私有云市场增速34%,青云的企业云在同年实现了120%的增长,这也是青云七年给出的成绩单,从云之基石到数字化转型的基石,帮助企业重构面向未来的竞争力。
纯软件定义的超融合
现在超融合已经做好准备,承载企业客户覆盖有稳态和敏态的双模IT。数据显示,2020年50%企业会逐渐把工作负载放在超融合上,不管是创新应用,还是核心、集中、传统的应用。
“我们要把云的能力赋予超融合,便是云上的超融合。”青云QingCloud解决方案架构师黄文龙说道。青立方Qing³超融合在诞生之初就是纯软件定义的超融合,并且逐渐向微服务架构的技术演进。
青立方Qing³超融合基于标准的X86硬件快速部署交付,可以在不影响业务的情况下,从2个节点到1000个节点的水平扩展,而且实现统一的资源管理、运营标准化。
青立方Qing³超融合系统目前发展到融合3.0阶段,解决了客户选择组合的顾虑,从X86服务器、存储、云平台、虚拟化可以统一进行交付,实现交付全栈云能力。报告显示,青立方Qing³超融合2018年第四季度市场份额同比增长129.6%,超出超融合市场同期平均增速一倍多。
“我们是业内唯一一家基于超融合可以交付开箱即用的全栈云的服务商。”黄文龙指出,超融合硬件固然重要,核心还是软件,这正是青云QingCloud的强项。通过SDX,即软件定义计算、存储、网络、安全等,实现超融合的交付。
青立方Qing³ 2018年实现增速85%,新增76%客户。其中,阳光保险使用青立方Qing³超融合搭建了开发、生产和灾备场景,让保险“双录”产生的大量非结构化数据进行存储,并支撑了每日一亿次访问的“开门红”业务。
未来KubeSphere也将加入到超融合中,这样不仅可以在KubeSphere里集成DevOps、微服务、OpenPitrix多云应用管理平台等上层应用,还可以向下集成存储和网络,一体化的交付给客户容器云平台。
走向融合的存储
存储市场同超融合市场一样发展迅速,IDC数据显示,2018年中国全年的软件定义存储市场的增长速度是55%,高于私有云的增长速度,印证了青云对软件定义存储市场快速发展的预期。
存储按类型可以分为文件存储、块存储、对象存储。文件存储占一半的市场份额,其次是块存储占27%左右,对象存储占20%左右,其中对象存储增长速度最快。
存储类型重点场景包括高性能计算、视频流媒体、视频监控、数据库与虚拟化存储等。高性能计算主要对应文件存储或者分布式文件存储,视频流媒体和视频监控对应文件存储和对象存储,虚拟化和数据库等专业结构化数据的存储对应块存储。
新技术也在不断驱动存储行业的演进,QingStor企业级分布式存储产品经理冯相东表示,基于软件定义和全闪存实现的分布式存储平台,能以中端的价格撬动原本高端市场,这也是QingStor存储产品线坚持的理念。
目前QingStor产品线架构服务包括:块存储、文件存储、对象存储,今年还将发布融合存储,可以在一套架构里提供三种或者任意两种的存储服务。
QingStor NeonSAN(块存储):满足云时代企业的核心存储平台,主要承载企业现有的Oracle数据库、SQL Server数据库和企业虚拟化平台、青云云平台等。
QingStor文件存储:从定位和场景主要分为两部分:一部分主要为了满足企业内部广泛使用的产生应用、企业邮箱系统、OA办公系统等;另一部分是具有行业特色的高性能计算、高清视频编辑、医疗影像存储等需求。
QingStor对象存储:定位承载海量数据、海量并发的存储平台,主要承载视频监控、企业网盘、数据仓库等。
QingStor融合存储:通过融合存储提供三种类型的存储接口。
QingStor可以满足客户多种核心需求,包括:性能和可靠性、适配场景、企业级特性、运维管理、标准硬件。QingStor作为纯自研软件定义存储,块存储、对象存储、文件存储既可以独立交付也可以融合交付,同时可以对接多种虚拟化、容器、物理环境,具备非常强的竞争力。
好文章,需要你的鼓励
大数据可观测性初创公司Monte Carlo Data推出全新Agent Observability产品,为AI应用提供全方位数据和AI可观测性。该工具帮助团队检测、分类和修复生产环境中AI应用的可靠性问题,防止代价高昂的"幻觉"现象,避免客户信任度下降和系统宕机。新产品采用大语言模型作为评判器的技术,能够同时监控AI数据输入和输出,提供统一的AI可观测性解决方案。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
网络安全公司Aikido披露了迄今最大规模的npm供应链攻击事件。攻击者通过钓鱼邮件获取维护者账户凭证,向18个热门JavaScript包注入恶意代码,这些包每周下载量超过26亿次。恶意代码专门劫持加密货币交易,监控浏览器API接口将资金转移至攻击者地址。受影响的包括chalk、debug等广泛使用的开发工具库。虽然攻击在5分钟内被发现并及时公开,但专家警告此类上游攻击极具破坏性,可能与朝鲜黑客组织相关。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。