至顶网CIO与应用频道 03月29日 北京消息:基于物联网(IoT)的攻击已经切实发生。CEB(现隶属于全球领先的信息技术研究和顾问公司Gartner)在最近一项调查中发现,近20%的企业机构在过去三年内至少观察到一次基于物联网的攻击。为了应对这些威胁,Gartner预测全球物联网安全支出将在2018年达到15亿美元,相比2017年的12亿美元增加了28%。
Gartner研究总监Ruggero Contu表示:“在物联网项目中,企业机构通常无法掌控被智能联网设备所用的软硬件的来源与性质。由此,我们预计会看到有关改进发现与资产管理(discovery and asset management)、软硬件安全评估(software and hardware security assessment)以及渗透测试(penetration testing)的工具和服务的需求不断涌现。此外,企业机构将会增强其对于外化网络连通性(externalizing network connectivity)影响的认识。这些因素将是预测期内支出增长的主要推动因素,物联网安全支出预计到2021年将达到310万美元(参见表一)。”
表一、全球物联网安全支出预测(单位:百万美元)
2016年 |
2017年 |
2018年 |
2019年 |
2020年 |
2021年 |
|
端点安全 |
240 |
302 |
373 |
459 |
541 |
631 |
网关安全 |
102 |
138 |
186 |
251 |
327 |
415 |
专业服务 |
570 |
734 |
946 |
1,221 |
1,589 |
2,071 |
总计 |
912 |
1,174 |
1,506 |
1,931 |
2,457 |
3,118 |
来源:Gartner(2018年3月)
尽管全球支出逐年稳定增长,但Gartner预测,在2020年之前,阻碍物联网安全增长的最大因素都是缺少对物联网项目的安全最佳实践及工具的优先考虑与适当实施,而这将影响80%的物联网安全潜在支出。
Contu先生解释道:“虽然物联网的安全性一直被视为一个重要问题,但大部分物联网安全的实施一直都是由各业务单元自行规划、部署与运行,在此期间会与某些IT部门合作以解决受设备影响的IT环节。但是,这些实施几乎全都缺少经由通用架构的协作或一致性的安全策略,且厂商产品或服务选择依然在很大程度上基于设备提供商与合作伙伴的联盟或者设备增强/替换的核心系统。”
虽然许多垂直项目中已出现了基本的安全模式,但尚未形成可连续重复使用的政策或设计模板。因此,IT安全标准常设机构、联盟组织与厂商联盟现在才开始处理针对业内具体物联网安全组件的技术标准。
“设计安全”的缺失源自缺少具体且严格的法规。Gartner预测,未来这一趋势将会发生改变,尤其是在医疗保健与汽车等受到高度监管的行业。
到2021年,Gartner预测法规遵从性(regulatory compliance)将成为影响物联网安全部署的主要因素。由于物联网正在渗入工业世界,因此那些必须遵守相关法规及指南以改进关键基础设施保护(CIP)的行业将不得不更加重视安全性问题。
Contu先生认为:“目前,通过云端部署的传感器、机器人与远程连接等智能联网设备而提升操作流程自动化的势头正在不断上升。所谓的工业物联网(IIoT)或工业4.0创新已经在能源、石油与天然气、交通运输与制造业等部署操作技术(OT)的行业领域内对安全性产生了影响。”
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
Google DeepMind最新研究发现,视频生成AI模型Veo 3展现出惊人的零样本学习能力,能够在未经专门训练的情况下完成图像分割、边缘检测、迷宫求解等多种视觉任务。研究团队通过18,384个视频样本验证了这一发现,认为视频模型正朝着通用视觉智能方向发展,可能引发类似大语言模型的行业变革。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
北航团队开发的GeoSVR技术突破了传统3D重建方法的局限,采用稀疏体素表示和体素不确定性评估,无需依赖初始点云即可实现高精度表面重建。该方法通过智能的深度约束和体素协同优化策略,在DTU等标准数据集上取得了最佳性能,为VR/AR、文物保护、影视制作等领域提供了新的技术选择。