据IBM预测,到2020年将有大约270万个新职位面向精通数据的专业人员开放。根据Glassdoor的预测,这些专业人员的平均薪资为96441美元,在一些城市甚至更高。
如果你的公司正在积极聘请数据科学专业人士,那么好消息是,对内部IT员工进行交叉培训可能是一个成功的策略。根据来自数据科学社区Kaggle的最新报告显示,59%的在职数据科学家将从自学或者在线开放课程中获得相关技能。
作为一位企业培训总监,我曾被要求制订一个“从零开始”的课程,可以培训入门级员工,以及交叉培训更有经验的员工,让他们获得编写股票交易系统代码所需的技能,还包括远程处理引擎、操作系统、数据库、代码库、调用操作、端到端软件开发流程的相关技能培训。
这是一个复杂的任务。目标是能够让一个新培训的人员成为项目的骨干,他/她能够在高要求的环境中立即开始开发代码。
相同的方法也适用于内部数据科学技能的开发。下面就是5个基本步骤:
1、分析公司项目中的任务和技能差距
一个好的起点就是和公司项目负责大数据和分析的负责经理进行沟通。他们的项目有哪些不足?他们在项目中缺少哪些人员配备?需要哪些具体的技术和个人技能?是否有因为缺乏人能够做到而导致项目推迟?根据这些问题的反馈,你可以按照项目列出任务和技能差距的列表。
2、将这些技能与内部员工进行对照
下一步就是评估内部人员,看看谁有能力和背景来承担这些任务和填补技能空白,然后把他们确定为培训的对象。你可以查看公司的个人IT经验,研究员工的以往工作经验,与项目经理一起了解候选人的更多信息,以及他们的才能和兴趣也很重要。
3、设计一个课程,找到一个项目
让你选择的员工在一个孤立的实验环境中开发自身技能,这一定不会奏效的。实验室对于开发技能来说是很好的,但是能够让他们真正地利用这些技能,就要运用于实际的项目中,从而积累经验和自信。
4、不断与项目经理进行沟通
与开发新培训员工的项目经理保持沟通,以便你了解项目进展情况。这让你保持与经理的融洽关系。在项目完成之后,与项目经理进行沟通,有助于评估培训及传授给员工的技能的有效性。在这个过程中,你可以发现课程中那些方面是不错的,哪些方面是可以加强的。
5、不断改进课程,以便跟上实际的项目需求
一些项目需求是保持相对稳定的,但有一些项目需求是随着技术和业务变化而变化的。这一点至关重要,如果你正在开展培训,就需要跟上变化的步伐,这样你的培训总能提供项目所需的技能。你可以通过不断评估项目,然后回到课程中,确保培训与项目的需求是同步的。
最终,我要借用Cloudera教育服务部门副总裁Sara Sproehnle的一句话:“你可以很容易地对员工进行交叉培训。这并不是说技术是不可理解的。你只需要把现有的开发者、分析师和管理员集结到一起,对他们进行交叉培训。”
Sproehnle一语中的。如果越来越多的企业IT部门能够把大数据和分析培训掌握在他们自己手中,这个策略才能真正发挥作用。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。