至顶网CIO与应用频道 11月21日 北京消息:电子商务是日常生活不可分割的一部分,物流速度很大程度决定购物体验。京东商城的崛起的制胜因素就在于物流。京东智慧的供应链造就了带来了非常优秀的用户体验,其实物流有着非常长且复杂的链条,包括实时快递监控、智能配送、件量预测、库存优化、供应链管理、未来物流方式探索等。其中也分布着很多的场景和应用模块。
“京东-爱动人工智能叉车效率管理模组项目”旨在开发一种便于安装的小型化模块群组,用于对京东仓库内现有的叉车的日常装卸货数据进行统计,以便在未来对叉车的仓库作业轨迹和作业数量进行优化,提升京东物流资产的利用效率。自2016年底,爱动与京东物流合作,开始了“京东-爱动人工智能叉车效率管理模组”的开发计划。
爱动超越人工智能科技公司在运动传感器的模式识别领域有较长时间的经验积累,并且与Intel合作推出过基于Intel Curie模组的智能跑鞋(已经在京东众筹发售)。基于Curie的RBF神经网络技术,在项目开始初期,爱动团队采用激光测距仪辅助6轴惯性传感器,同时在服务器端配合机器学习算法,实现了对叉车主要日常动作的检测:空驶、水平搬运、静止,空叉升降以及装卸货升降等。相对于传统的叉车效率检测工业装置,该设备尺寸小巧,部署简单,不需要对叉车进行任何改造,并且内置锂聚合物电池,充满电后可以连续工作12个小时,基本满足了京东的初期项目需求。
在该版本的基础上,京东提出了新的需求,即能够实现粗略的“叉车轨迹记录”,同时“不能部署任何基站设备”。传统的物流技术解决方案中,室内的轨迹定位技术往往需要依赖大量的“电子标签”或者“有源基站”,独立的轨迹计算,并且不对叉车进行改造难度非常大。新技术中的VSLAM技术可以达成这一目标,但是设备成本和开发成本过高,完全超出了项目预算。
爱动团队发挥了在机器人技术和运动模式匹配技术多年的积累,利用“光流+惯性导航“技术再次达成了京东的新目标。
目前市面上的高技术无人机,在实现室内定点定高时,往往采用“超声波+光流”的技术,该技术通过摄像头计算两帧画面之间的“特征像素位移”确定飞行器的物理漂移,并根据PID算法纠正飞行器的位置。这样即便在没有GPS的室内,也可以实现飞行器的悬停定点。大疆精灵三开始的各个系列无人机都配备了这项“黑科技”。
爱动团队正是借助这项技术实现了京东的“无基站粗略室内轨迹”需求。通过集成“光学摄像模块+激光测距仪+ARM 微型计算机”,爱动团队在短短45天内从硬件到软件实现了相对稳定的轨迹定位模组。该模组同样非常小巧,便于安装,只需要叉车提供一个12v的供电接口,便可以通过磁铁固定在车辆顶部,通过对车辆后部的地面进行特征追踪,实现对车辆运行轨迹的计算。
通过加入轨迹计算模组,京东-爱动叉车效率监控模块目前可以非常准确地监控车辆的工作状态,并且可以相对准确地统计一天内叉车的工作里程,对提升叉车的工作效率提供了有力的数据支持。
未来,爱动团队还会继续和京东合作,开发更加可靠经济的“车辆效率管理模组”。目前爱动团队已经和北京的知名高校实验室达成了合作协议,建立了由十多名博士和硕士组成的研究团队,主攻机器视觉在仓储移动平台领域的应用技术。希望在2018年可以推出更加小型便捷的效率监控模块,实现对物流资产的智能化管理。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。