至顶网CIO与应用频道 11月10日 北京消息:从航空引擎到打印机,所有制造商和 OEM 都明白,相比于原始销售,在设备生命周期内提供服务可以让企业赚取多得多的收益。这样一来,优化和管理服务部件库存便成为在售后市场取得成功的关键所在。服务部件规划的低效率可能会导致高库存投资、低客户服务水平,以及高过剩成本和过时成本。为了完全实现库存优化的潜力,需要结合正确的业务目标对问题进行建模,同时适应特定的需求。需要谨记的部分事项:
优化位置与部件组合
考虑不同层级的交互作用
部件和位置折衷
在选择要储备的部件以及储备数量时,库存优化算法会考虑多种部件及多个层级之间的折衷。如果在一次折衷中同时考虑螺母、螺栓和发动机,则系统会将发动机视为昂贵的提议,因此可能会建议对其采取低库存或零库存。在大多数情况下,企业是不能接受这种解决方案的。一种有着商业敏锐性的方法是,对多个部件组或细分进行建模,使之各自处于一定的部件成本段内,因此,可以在成本相当的部件之间进行折衷。
为了根据业务需求进行有效的库存优化,重要的是要将部件分组成不同的细分段,而且这些细分段与业务保持一致。当细分段中的部件彼此为库存而竞争时,细分方案需要对部件进行适当的分组,使之能够用可接受的方式进行折衷并一起进行计量,这是一种 ERP 和电子表格达不到的高级功能。
例如,如果企业有 X 射线和 MRI 设备两个产品线,则可能无法接受将两种产品的部件组合到一个细分段内,X 射线业务需要独立于 MRI 业务之外,满足自己的目标。根据行业状况,细分方案可能基于很多不同的因素,例如,部件类型、寻购、重要性、预算等;但是,中心主题是,同一细分段中的部件应该具有共同的规划目标,还要能够彼此竞争。
实现潜力
当服务矩阵从交易性损后修理业务转变为由正常运行时间和资产供应情况组成的可用性矩阵后,部件与位置的相互依赖在全球制造运营中的作用将变得至关重要。制造商需要一种高等能力来了解如何储备服务部件(相比于组件和资产),还需要一种整体视角来了解各组件如何协同运行,这将依赖于包括位置在内的大量因素。
资本设备依赖于在适当的地点、适当的时机,储备适当的部件,而这需要在整个服务网络及其层次水平上具备全面的视角。除此之外,制造商还必须考虑不同位置的间断性需求,以及不同位置之间的依赖关系,以便做出准确、可盈利的库存和业务决策。行业领导者如何通过着眼于多级优化,来管理他们的全球服务运营呢?阅读这里的案例研究。
好文章,需要你的鼓励
人工智能开发商Anthropic为其旗舰聊天机器人Claude推出新的医疗健康功能,用户现在可以与服务共享医疗记录以更好地了解自己的健康状况。Claude可以连接官方医疗记录和苹果健康等健身应用,进行更个性化的健康对话。新功能现已向美国的Claude Pro和Max订阅用户开放。公司强调该工具不用于诊断或治疗建议,而是帮助用户理解复杂医疗报告,为医患沟通做准备,并承诺严格保护用户隐私数据。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
谷歌发布通用商务协议(UCP)开放商务标准,旨在让AI智能体自动化整个购物流程,从产品发现到支付再到售后服务。该协议与Shopify、Target、沃尔玛等零售商合作开发,支持AI智能体协同处理客户购买流程各环节。谷歌还推出品牌商业智能体和直接优惠工具,优化AI搜索中的购物体验。麦肯锡预测智能体商务到2030年将成长为3万亿美元市场。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。