至顶网CIO与应用频道 11月10日 北京消息:从航空引擎到打印机,所有制造商和 OEM 都明白,相比于原始销售,在设备生命周期内提供服务可以让企业赚取多得多的收益。这样一来,优化和管理服务部件库存便成为在售后市场取得成功的关键所在。服务部件规划的低效率可能会导致高库存投资、低客户服务水平,以及高过剩成本和过时成本。为了完全实现库存优化的潜力,需要结合正确的业务目标对问题进行建模,同时适应特定的需求。需要谨记的部分事项:
优化位置与部件组合
考虑不同层级的交互作用
部件和位置折衷
在选择要储备的部件以及储备数量时,库存优化算法会考虑多种部件及多个层级之间的折衷。如果在一次折衷中同时考虑螺母、螺栓和发动机,则系统会将发动机视为昂贵的提议,因此可能会建议对其采取低库存或零库存。在大多数情况下,企业是不能接受这种解决方案的。一种有着商业敏锐性的方法是,对多个部件组或细分进行建模,使之各自处于一定的部件成本段内,因此,可以在成本相当的部件之间进行折衷。
为了根据业务需求进行有效的库存优化,重要的是要将部件分组成不同的细分段,而且这些细分段与业务保持一致。当细分段中的部件彼此为库存而竞争时,细分方案需要对部件进行适当的分组,使之能够用可接受的方式进行折衷并一起进行计量,这是一种 ERP 和电子表格达不到的高级功能。
例如,如果企业有 X 射线和 MRI 设备两个产品线,则可能无法接受将两种产品的部件组合到一个细分段内,X 射线业务需要独立于 MRI 业务之外,满足自己的目标。根据行业状况,细分方案可能基于很多不同的因素,例如,部件类型、寻购、重要性、预算等;但是,中心主题是,同一细分段中的部件应该具有共同的规划目标,还要能够彼此竞争。
实现潜力
当服务矩阵从交易性损后修理业务转变为由正常运行时间和资产供应情况组成的可用性矩阵后,部件与位置的相互依赖在全球制造运营中的作用将变得至关重要。制造商需要一种高等能力来了解如何储备服务部件(相比于组件和资产),还需要一种整体视角来了解各组件如何协同运行,这将依赖于包括位置在内的大量因素。
资本设备依赖于在适当的地点、适当的时机,储备适当的部件,而这需要在整个服务网络及其层次水平上具备全面的视角。除此之外,制造商还必须考虑不同位置的间断性需求,以及不同位置之间的依赖关系,以便做出准确、可盈利的库存和业务决策。行业领导者如何通过着眼于多级优化,来管理他们的全球服务运营呢?阅读这里的案例研究。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。