至顶网CIO与应用频道 10月30日 北京消息:开发人员和大厨的相同之处在哪里?两者都要通过不断的测试才可以出成果。在烹饪口味纯正佳肴时, 厨师会不断试尝味道,以确保烹饪过程中的每一步都按计划进行。
同理,开发人员在交付结果之前,也会在整个进程中进行持续测试,确保项目发布时不会有任何“惊喜”。这对网络运维来说至关重要。这样做使企业有机会在用户体验和应用性能受到影响之前,主动发现和解决网络行为问题。
尝试和测试
鉴于当今网络环境的动态特性,动态测试以及对网络异常的敏捷反应是两种宝贵的资源。由于SDN和云计算等技术的发展,网络已经成为一个由不断变化的、由物理、逻辑和虚拟组件构成的流动性热点。
对新的网络协议栈所做的每一个微小的改变或更新,都有可能损害用户体验。能否在潜在的破坏或质量退化发生前抢先一步发现问题,将会关系到新业务举措、客户交易、数字化服务的成败。
通过动态测试,企业不仅能验证现有堆栈中的每一个更改,也能在用户使用之前验证新技术和网络服务在生产过程中的部署情况。
成功的必要因素
动态测试与实时网络监控软件和实时分析结合使用能带来最佳效果。这三个组件使企业机构能够建立一个网络性能动力室,覆盖范围可从数据中心机架延伸至个人使用者的移动设备上。
例如, 动态服务数据和被动基础架构性能的组合能在可预测的网络行为以及库存、拓扑、断层、流和数据包分析的基础上,从终端用户的视角创建全面的网络服务质量端到端视图。所有这些元素都可以被转换成用于网络运维的可操作智能,为其提供当前客户体验质量、服务性能和未来网络行为的最佳视图。
更低的管理成本,更高的灵活性
为了充分利用动态测试,企业机构需要建立合理的流程和平台以助力网络运维团队。性能优良的网络监控软件使企业不仅能在战略终端的位置轻松地远程实施测试代理,在核心、高流量区域也同样能如同多租户测试代理一样能够执行测试、捕获主动监控结果并利用回传技术来延展网络可视性,而这些都有助于减轻网络团队的管理负担。
即使在今天,解决方案如果仅能识别进程中的网络行为也已远远不够。对于可用以预测未来行为的数据,网络运维团队还需帮助提高反应能力。快速解决问题和主动避免问题对于保证用户体验至关重要。自动警报、触发器以及测试案例都能够帮助网络运维团队迅速发现问题的根本原因。
监控、预测、分析网络行为及性能是现代网络基础架构的先决条件。通过确保所有构成要素在一项新应用或新服务开始之前、进行中以及结束之后都相互协调配合,企业将能创造出数字化时代的杰作。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。