至顶网CIO与应用频道 10月30日 北京消息:开发人员和大厨的相同之处在哪里?两者都要通过不断的测试才可以出成果。在烹饪口味纯正佳肴时, 厨师会不断试尝味道,以确保烹饪过程中的每一步都按计划进行。
同理,开发人员在交付结果之前,也会在整个进程中进行持续测试,确保项目发布时不会有任何“惊喜”。这对网络运维来说至关重要。这样做使企业有机会在用户体验和应用性能受到影响之前,主动发现和解决网络行为问题。
尝试和测试
鉴于当今网络环境的动态特性,动态测试以及对网络异常的敏捷反应是两种宝贵的资源。由于SDN和云计算等技术的发展,网络已经成为一个由不断变化的、由物理、逻辑和虚拟组件构成的流动性热点。
对新的网络协议栈所做的每一个微小的改变或更新,都有可能损害用户体验。能否在潜在的破坏或质量退化发生前抢先一步发现问题,将会关系到新业务举措、客户交易、数字化服务的成败。
通过动态测试,企业不仅能验证现有堆栈中的每一个更改,也能在用户使用之前验证新技术和网络服务在生产过程中的部署情况。
成功的必要因素
动态测试与实时网络监控软件和实时分析结合使用能带来最佳效果。这三个组件使企业机构能够建立一个网络性能动力室,覆盖范围可从数据中心机架延伸至个人使用者的移动设备上。
例如, 动态服务数据和被动基础架构性能的组合能在可预测的网络行为以及库存、拓扑、断层、流和数据包分析的基础上,从终端用户的视角创建全面的网络服务质量端到端视图。所有这些元素都可以被转换成用于网络运维的可操作智能,为其提供当前客户体验质量、服务性能和未来网络行为的最佳视图。
更低的管理成本,更高的灵活性
为了充分利用动态测试,企业机构需要建立合理的流程和平台以助力网络运维团队。性能优良的网络监控软件使企业不仅能在战略终端的位置轻松地远程实施测试代理,在核心、高流量区域也同样能如同多租户测试代理一样能够执行测试、捕获主动监控结果并利用回传技术来延展网络可视性,而这些都有助于减轻网络团队的管理负担。
即使在今天,解决方案如果仅能识别进程中的网络行为也已远远不够。对于可用以预测未来行为的数据,网络运维团队还需帮助提高反应能力。快速解决问题和主动避免问题对于保证用户体验至关重要。自动警报、触发器以及测试案例都能够帮助网络运维团队迅速发现问题的根本原因。
监控、预测、分析网络行为及性能是现代网络基础架构的先决条件。通过确保所有构成要素在一项新应用或新服务开始之前、进行中以及结束之后都相互协调配合,企业将能创造出数字化时代的杰作。
好文章,需要你的鼓励
谷歌今日发布Gemini Enterprise,这是一个集成了先进AI模型、聊天机器人和智能代理的一体化企业平台。该平台提供统一聊天界面,可安全连接各种数据源,包括Google Workspace、Microsoft 365等企业应用。平台内置超过1500个AI代理,支持无代码构建工具,用户可创建自动化工作流程。标准版年费每席位每月30美元起。
华中科技大学联合华为和上海交大研究团队开发出革命性3D人体重建系统Snap-Snap,仅需正面和背面两张照片即可在190毫秒内生成完整3D人像。该技术突破了传统方法对昂贵设备和复杂人体先验模型的依赖,通过智能几何推理和侧面增强算法实现高质量重建,为虚拟现实、游戏开发等领域的大众化应用奠定基础。
OpenAI推出的AI视频生成应用Sora在不到五天内下载量突破100万次,增长速度超过ChatGPT。该应用类似TikTok,提供无限垂直视频流,但所有视频均由AI生成。用户只需输入提示词即可创建10秒视频,还可通过Cameo功能制作个人视频。尽管目前仅在北美地区开放且需要邀请码使用,但已引发版权争议和娱乐行业反弹。
这项研究介绍了aiXiv——首个专为AI科学家设计的开放学术平台。该平台由多伦多大学等18个机构联合开发,支持AI独立完成论文提交、同行评审和发表全流程。通过多智能体架构和五阶段安全防护机制,平台实现了81%的评判准确率,并显著提升了AI生成研究的质量。这标志着科学研究范式的重大转变。