Teradata将于今年晚些时候启用其TAP——Teradata Analytics Platform (Teradata分析平台)。
该公司还采用了IntelliSphere概念的降价捆绑策略。
TAP将Teradata和Aster技术整合在一起,计划包含Spark、TensorFlow、Gluon和Theano等分析引擎。
这样应该能够快速方便地访问一系列算法,包括深度学习的一些算法。
它将具有可扩展的分析功能,例如归因、路径分析、时间序列以及一系列统计、文本和机器学习算法。
通过TAP,用户可以摄入并分析数据类型,例如文本、空间、CSV和JSON格式,包括对Avro的支持,这是一种允许程序员动态处理基模架构的开源数据类型。
Teradata 表示,TAP将在平台和高速数据网络中管理和分析数据,避免了在多个引擎中存储和转移数据。
它提供商业和开源分析技术和编程语言访问,如Python、R、SAS和SQL。
Jupyter、RStudio、KNIME、SAS和Dataiku等工具也兼容。Teradata AppCenter允许分析人员通过在可以自助服务的、基于网络的界面上部署可重用模型,与同事分享应用程序。
Teradata希望将其软件部署在Teradata Cloud的硬件上,在公共云中或者运行在VMware支持的商品化硬件上,并具有便携式和基于订阅的许可证。基于订阅的IntelliSphere许可证将可以使用数据采集、管理、部署和访问的产品集合。
它表示,相比于单独购买产品,这种做法可以让客户节省大量资金。与单独购买四个产品——Unity、Data Lab、Data Mover和Query Grid——相比,这种做法可以节省30%的费用,并且还附带了六款免费产品。
具有Aster分析引擎的Teradata Analytics Platform将于今年晚些时候可供使用。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。