Teradata将于今年晚些时候启用其TAP——Teradata Analytics Platform (Teradata分析平台)。
该公司还采用了IntelliSphere概念的降价捆绑策略。
TAP将Teradata和Aster技术整合在一起,计划包含Spark、TensorFlow、Gluon和Theano等分析引擎。
这样应该能够快速方便地访问一系列算法,包括深度学习的一些算法。
它将具有可扩展的分析功能,例如归因、路径分析、时间序列以及一系列统计、文本和机器学习算法。
通过TAP,用户可以摄入并分析数据类型,例如文本、空间、CSV和JSON格式,包括对Avro的支持,这是一种允许程序员动态处理基模架构的开源数据类型。
Teradata 表示,TAP将在平台和高速数据网络中管理和分析数据,避免了在多个引擎中存储和转移数据。
它提供商业和开源分析技术和编程语言访问,如Python、R、SAS和SQL。
Jupyter、RStudio、KNIME、SAS和Dataiku等工具也兼容。Teradata AppCenter允许分析人员通过在可以自助服务的、基于网络的界面上部署可重用模型,与同事分享应用程序。
Teradata希望将其软件部署在Teradata Cloud的硬件上,在公共云中或者运行在VMware支持的商品化硬件上,并具有便携式和基于订阅的许可证。基于订阅的IntelliSphere许可证将可以使用数据采集、管理、部署和访问的产品集合。
它表示,相比于单独购买产品,这种做法可以让客户节省大量资金。与单独购买四个产品——Unity、Data Lab、Data Mover和Query Grid——相比,这种做法可以节省30%的费用,并且还附带了六款免费产品。
具有Aster分析引擎的Teradata Analytics Platform将于今年晚些时候可供使用。
好文章,需要你的鼓励
在我们的日常生活中,睡眠的重要性不言而喻。一个晚上没睡好,第二天的工作效率就会大打折扣,而充足的睡眠不仅能让我们恢复精力,还能帮助大脑整理和巩固当天学到的知识。有趣的是,AI模型竟然也表现出了类似的“睡眠需求”。
Patronus AI发布突破性研究,构建了首个系统性AI代理错误评估体系TRAIL,涵盖148个真实案例和21种错误类型。研究发现即使最先进的AI模型在复杂任务错误识别上准确率仅11%,揭示了当前AI代理系统在长文本处理、推理能力和自我监控方面的重大局限,为构建更可靠的AI系统指明方向。
尽管模型上下文协议(MCP)自11月推出以来用户数量快速增长,但金融机构等监管行业仍保持谨慎态度。银行等金融服务公司虽然在机器学习和算法方面是先驱,但对于MCP和Agent2Agent(A2A)系统的采用较为保守。监管企业通常只使用内部代理,因为其API集成需要经过多年审查以确保合规性和安全性。专家指出,MCP缺乏基本构建块,特别是在互操作性、通信标准、身份验证和审计跟踪方面。金融机构需要确保代理能够进行"了解您的客户"验证,并具备可验证的身份识别能力。
这项研究首次从理论和实践证明AI模型可通过模仿生物睡眠-学习周期显著提升性能。研究发现AI训练中存在自发的"记忆-压缩循环",并据此开发了GAPT算法,在大语言模型预训练中实现4.8%性能提升和70%表示效率改善,在算术泛化任务中提升35%,为AI发展指出了注重信息整理而非单纯数据扩展的新方向。