Teradata将于今年晚些时候启用其TAP——Teradata Analytics Platform (Teradata分析平台)。
该公司还采用了IntelliSphere概念的降价捆绑策略。
TAP将Teradata和Aster技术整合在一起,计划包含Spark、TensorFlow、Gluon和Theano等分析引擎。
这样应该能够快速方便地访问一系列算法,包括深度学习的一些算法。
它将具有可扩展的分析功能,例如归因、路径分析、时间序列以及一系列统计、文本和机器学习算法。
通过TAP,用户可以摄入并分析数据类型,例如文本、空间、CSV和JSON格式,包括对Avro的支持,这是一种允许程序员动态处理基模架构的开源数据类型。
Teradata 表示,TAP将在平台和高速数据网络中管理和分析数据,避免了在多个引擎中存储和转移数据。
它提供商业和开源分析技术和编程语言访问,如Python、R、SAS和SQL。
Jupyter、RStudio、KNIME、SAS和Dataiku等工具也兼容。Teradata AppCenter允许分析人员通过在可以自助服务的、基于网络的界面上部署可重用模型,与同事分享应用程序。
Teradata希望将其软件部署在Teradata Cloud的硬件上,在公共云中或者运行在VMware支持的商品化硬件上,并具有便携式和基于订阅的许可证。基于订阅的IntelliSphere许可证将可以使用数据采集、管理、部署和访问的产品集合。
它表示,相比于单独购买产品,这种做法可以让客户节省大量资金。与单独购买四个产品——Unity、Data Lab、Data Mover和Query Grid——相比,这种做法可以节省30%的费用,并且还附带了六款免费产品。
具有Aster分析引擎的Teradata Analytics Platform将于今年晚些时候可供使用。
好文章,需要你的鼓励
本文探讨了如何利用混合智能来超越传统的多元化、公平性和包容性(DEI)议程。作者指出,当前的DEI计划可能加剧分歧,而混合智能则提供了一个统一的框架,强调人类共同的基本维度。文章提出了一个2x4模型,包括4个个人维度和4个集体维度,以此来理解人类经验的普遍性。通过将人工智能与这种自然智能模型相结合,组织可以创造更包容、更有效的工作环境。}
这篇文章介绍了AI芯片初创公司EnCharge的创新技术,该公司声称其模拟人工智能加速器在功耗上仅需传统桌面GPU的一小部分,却能提供相当的计算性能。EnCharge的推理芯片在8位精度下能以1瓦特的功耗提供150 TOPS的AI计算能力。该技术经过多年的研发,旨在通过在内存中进行计算来提高效率,并支持多种AI工作负载。
微软发布了 Majorana 1 量子芯片,这是一个重大突破。该芯片采用拓扑量子比特技术,具有更低的错误率,有望解决量子计算的可扩展性问题。这项技术是微软近 20 年研究的成果,标志着量子硬件取得重要进展,为构建大规模量子计算机铺平了道路。
xAI公司推出的Grok 3模型在各项关键基准测试中表现出色,匹敌或超越了目前最先进的AI模型。尽管训练尚未完成,Grok 3已展现出强大实力。本文探讨了Grok 3可能对AI行业产生的影响,包括加速模型发布周期、验证大规模计算投资的价值,以及推动开源文化的发展等方面。