为了寻求更智能,更快速的服务,IT部门在部署新方法和流程以改进内部服务交付方面一直处于领先地位。在未来的一年,人工智能(AI)将开始推动服务管理方面的新突破,从而为IT部门和组织带来前所未有的效率。
通过将服务管理迁移到云端,IT团队从主要处理业务中断转向构建综合服务目录,帮助员工更快更有效地完成工作。现在,下一轮的颠覆性技术是由人工智能驱动的,这得益于云服务提供的前所未有的数据洞察力。新的人工智能功能可以提供一个分析输入数据的自解析服务台,并将其与相应的解决方案相匹配。
简单地帮助人们完成工作是服务管理的核心。随着组织使用服务管理工具让更多服务实现自动化,它们还产生更多的数据。因此,分析数据以改善服务提供正变得越来越困难。未来最大的生产力进步将是使用人工智能(AI)和机器学习(ML)等技术来利用数据提供更智能,更高效的服务的解决方案。
为了显著改善企业提供内部服务交付,人工智能将通过以下三种主要方式进行转变:
首先,人工智能将为自我解决的服务平台提供支持。由于机器学习功能可以不断跟踪用户行为并提出明智的建议,服务管理解决方案将能够提供自助选项,减少输入服务台的门票数量。员工更愿意找到可以自己解决简单问题的快速解决方案,例如设置语音信箱或重设密码。但是,如果他们不能自己快速找到答案,他们将采取措施获得外界的帮助。通过分析和比较从门票到资源池的文本,人工智能的功能可以快速而准确地将最终用户路由到正确的解决方案,以解决他们的问题,这最终赋予用户权力,并通过改进自助服务为用户带来更好的体验。
第二,人工智能将帮助服务台团队通过预测能力提供更好的服务体验。提交给服务台的大多数门票是IT部门以前处理过的问题,例如如何更新移动设备上的操作系统。使用人工智能,服务管理解决方案将能够在进入系统时分析故障单,寻找与其他故障单的共同点,并将其与以前解决或关闭的故障单进行比较,从而为IT管理员提供快速解决的明确途径。
这种预测能力还扩展到将门票与开放门票相比较,使IT部门能够看到可能对组织产生更大影响的潜在趋势。例如,如果多个员工报告登录到他们的电子邮件中的问题,人工智能系统可以将这些请求视为可能需要升级到高级IT管理人员进行处理的更大问题。
第三,人工智能有望降低成本,让IT团队更智能,更有策略地工作。在不久的将来,机器学习功能将不断跟踪用户行为并提出明智的建议,而聊天机器人和基于语音的助理将会处理初期支持。随着服务管理解决方案变得更加自主,采用人工代理的企业将节省时间,专注于更多的战略任务,提供一致的高质量服务。
由于常见的门票被组合在一起并被确定为可能的趋势,因此人工智能驱动的服务台还提供额外的效率提升,帮助IT管理员在需要升级某个问题时更快速地识别。同样,了解过去的共性和未来模式将使IT部门能够在即将错过服务级别协议时识别和创建警报。
新的服务管理人工智能的功能正在推出,企业员工和IT管理人员都将能够享受更智能,更快速的IT服务台。也许有人会谈论无人驾驶汽车和未来的无人机,但说到IT服务管理,人工智能正在改善人们的工作方式——就在这里,就在此时此刻。
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。