IDC最近发布了一份关于亚太地区人工智能(AI)和认知计算的应用报告,题为“IDC PeerScape:亚太(不包括日本)医疗行业的认知/AI实践”,其中列出了亚太区医疗机构采用AI/认知计算的最佳实践。IDC相信,医疗保健市场(包括医院、生命科学/医疗器械/医疗保险公司)将成为最早接受该技术并采取行动的重要市场。
IDC亚太医疗研究经理Ashwin Moduga表示:“医院将不仅利用AI/认知来实现自动化或者精确性。实施该技术的目标是弥补该季度医疗专家的紧缺。新型解决方案已经在帮助医院利用深度学习改善医疗图像诊断,并以最少的人力投资进行大规模诊断工作。未来10年,AI/认知解决方案将着眼于加强决策,为临床医生提供验证临床决策的信心——帮助改善疾病的应对。”
“在未来2-3年,医院将经过试验简单自动化的阶段,开始投资那些能够从不断增长的、来自个人和医院医疗信息管理系统的非结构化数据中获得可行洞察力的深度算法。”
让来自业务线和最终用户(医师和护理人员)等利益相关者参与其中,实施这些项目的重点是医院的需求——私人卫生部门投资特定的临床据测支持系统,用于像肿瘤学和神经学这样的疾病,同时较小型的、公有的医疗系统探索与数据输入自动化和患者参与相关的领域。
“虽然这个地区大多数的医院——除了大型私人诊所——仍然在评估规模解决方案,但重要的是为选定的个别流程开始内部实施。对很多医院来说,这些内部项目最终可以改变关键流程利益相关者的想法、项目范围以及展示未来大型投资的ROI,”IDC人工智能与认知计算高级研究经理Jessie Cai这样表示。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。