大多数现代的物联网生态系统都依赖于与互联网的永久连接。设备不断地向云中的数据中心发送和接收数据。明显的优点:用户可随时随地对系统进行监控和控制。明显的缺点:在连接丢失的情况下,大多数系统停止工作。为什么我们愿意承担这个风险?
物联网之所以被称为物联网,是因为互联网扮演了重要的角色。设备在本地环境中不再被隔离,它们可以随时与外界互动,使用天气或交通的实时数据,帮助我们做出最佳决策,管理我们的日常生活。但是,永远在线所带来的便捷,让我们对数据变得很随意。
物联网设备通常通过网络向数百公里之外发送数据,进行交互,即使有时设备之间的距离只有几米。当我们使用我们的智能手机,打开客厅的灯时,在毫秒之内,该命令就穿梭了大陆的一半。我们认为这很正常。但是,如果你的孩子就在隔壁房间,你会通过WhatsApp来叫他吃饭吗?这很奇怪,不是吗?
随着市场上的处理器更便宜,更小,是时候收回一点控制权了。如果智能设备依赖于信息中心来做出决定,那么这个设备并不智能。
过去,云是一切的解决方案,但这种趋势似乎正在转变。显而易见,并不是所有的数据都需要发送到云,这样会使得物联网生态系统容易出现停电现象,甚至使整个安装过程放缓。
边缘计算越来越受欢迎,将处理能力从信息中心逐渐转移到网络边缘。即使像微软(Azure IoT Edge)和亚马逊(AWS Greengrass)这样的巨头最近也意识到这样的趋势,并提供他们的边缘解决方案。
边缘这个术语起源于移动网络,通常数据在尽可能接近终端用户设备的点被压缩;目的是使其更快地在移动网络中传输。其目标是缓解网络负担,加快整个系统的运行。边缘意味着在终端进行尽可能多的处理—在网络的边缘,通常在连接设备上。它适用于移动网络,所以应该也适用于物联网网络。
云或边缘:应该如何选择?
在生活中经常如此,没有完美的解决方案。这取决于每个用例。两者的混合可能是完美的:在混合系统中,简单的任务在设备之间直接进行。这样,他们可以尽可能快速,独立地完成工作,这对于楼宇自动化,或智能行业的设置,尤为有效。
只需确保你将分析和监控所需的数据,发送到云。 随着大型公司将业务从纯云转移到混合产品,我们甚至可能会看到因为有无数不同的标准,多样化物联网的各种困难。
因为短期内不会有任何通用的物联网标准,因此设备和网关制造商可能会在其设备中实现更多的功能,而不仅仅是将其放到云中。 关于物联网生态系统,我们已经徘徊在边缘太久了。让我们更靠近它。
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。