你是否听说过不用开发人员或管理员的任何努力,云端应用程序性能可以自动优化的童话故事?太多人认为这是现实,而不是童话。
人们把这种混乱归咎于早期云计算的炒作,而“弹性”经常被描述为与云性能有关的东西。虽然弹性确实可以通过配置服务器进行扩展,或者也许自动使用无服务器计算技术,但弹性概念本身并不能保证应用程序运行良好。
弹性的现实不符合这个童话故事,其中有三个原因:
首先,性能问题通常与应用程序本身的设计,开发,以及部署有关。性能不佳的应用程序不会受益于更快的虚拟处理器或更多的虚拟处理器,这在某些程度上可能被人认可。
因此,在设计和构建应用程序时,将其性能考虑到其中。
第二,可能花更多的成本却得到回报很少。虽然企业可以从云平台的虚拟硬件和服务获得未优化软件的边缘性能优势,但事实上,企业将最终在云服务方面花更多的成本来获得最低的性能回报。
公共云可以提供自动扩展和自动配置服务,如果应用程序性能是一个问题,它可能会诱使企业使用它们。但是把它们打开就意味着企业已经把控制权转移到了云计算提供商来试图解决应用程序内在的性能问题。在许多情况下,企业将向云提供商支付费用。由于使用自动扩展和自动配置服务,一些客户端收到意想不到的巨大的云端帐单。
第三,企业可能会忘记安全和治理,如果不正确,这是性能杀手。例如,如果企业根据政府法规对所有内容进行加密,则可能降低其25%的性能,而几年前则是50%。精心设计应用程序的开发人员将考虑到如何首先管理数据的加密开销,以使加密价格实现最小化。
因此不是简单地将性能问题转变为云提供商。相反,企业必须进行设计,开发和测试工作才能获得最佳性能。
当企业将应用程序“升级和移动”到云端时,请务必在将应用程序移动到云端之前考虑如何解决系统性能问题。这是唯一的办法。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。