至顶网CIO与应用频道 05月11日 北京消息:5月10日,国内领先的新一代数据分析公司 GrowingIO V3.0s 产品上线,推出 5 大场景化模板,支持自定义实时,计算速度提升 50%,并优化数据看板等功能。
全新版本,将有助于业务人员降低数据分析上手门槛,提高分析效率和产出,给业务人员提供更有参考性和可执行的洞察,支持决策。
GrowingIO 创始人张溪梦认为,“此次上线,一直秉承 GrowingIO 产品理念,贴近公司内部一线业务人员需求,解决实际的业务问题,降低成本,提高数据分析效率,促进业务更好增长。”
一、场景化模板:一键生成专属数据看板
在实际的工作中,产品、运营和市场人员经常会遇到的问题是,不知道怎样建立一个系统化、有业务意义的数据分析体系,上手较难。
GrowingIO 3.0s 版本推出了业务场景模板,包括渠道分析场景、落地页分析场景、用户留存分析场景、APP版本更新分析场景和用户活跃分析场景。
场景分析模板大大降低了业务人员做数据分析的门槛,基于 GrowingIO 全量数据采集技术支持,有数据就有模板,就可以做相应的、系统的数据分析。
与此同时,GrowingIO 3.0s 版本的看板支持将事件分析、漏斗分析、留存分析放到一个报表中,不需要在分析工具之间跳转,按照业务分析需求,将数据分析的图表集中展示和使用,优化了数据分析体验。
二、自定义实时数据监测:支持分钟级项目监控
一个典型的应用场景,各大互联网金融、电商、在线旅游等网站 / App 大促时,业务人员可以在一个大屏幕上同时看实时数据。
即时监测整体及各个渠道的流量、转化,随时调整营销策略,无需被动等待数据或工程部门事后提供数据,造成事后分析,效率低下,数据无法真正服务业务。
GrowingIO 自定义实时分析不但可以查看 pv,并且能按照业务需求,按照某一自定义指标即时监测其趋势,随时调整营销策略,降低获客成本,提高渠道 ROI。
目前,在国内只有 GrowingIO 一家能够支持在产品界面直接添加指标进行实时数据监测,这主要源于其背后基于无埋点的全量数据采集技术。
针对此前数据分析产品需手动埋点、数据采集不全、核心业务数据无法保留、工程量繁重、制图生成耗时漫长、业务人员无法自主按需分析、无法对用户行为进行实时深层分析等行业七大痛点,GrowingIO 采用无埋点数据采集技术,全面收集,一键出图,实现实时数据分析,为企业提供高级定制分析解决方案,创造全新数据分析产品。
三、强大的第二代数据处理引擎:计算速度提升 50%
本次产品更新搭载着 GrowingIO 强大的第二代数据处理引擎,通过数据模型优化与自主研发的数据压缩存储技术,极大的提升了数据处理和查询速度,每秒处理数据能力提高 50%,小时数据计算速度提升 50%,回溯任务的计算速度提升 90%,支持更加丰富的维度分析,支持会话级别的维度归因计算。
在 GrowingIO 数据处理量已到达到每天千亿级别的情况下,保证用户能够更快速、更准确的获取各类分析数据。
好文章,需要你的鼓励
施耐德电气以“新质服务+产业向‘新’行”为主题,第六次参会,展示全新升级的“新质服务体系”,围绕创新驱动、生态协同和行业赋能三大核心领域,以全新升级的“新质服务体系”,助力中国产业向高端化、智能化、绿色化迈进。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
甲骨文正在成为大规模基础设施供应商的可靠选择。该公司通过AI技术推动应用开发,构建GenAI模型并将智能代理集成到应用套件中。CEO萨弗拉·卡茨透露,公司剩余履约义务达4553亿美元,同比增长4.6倍,并预测OCI收入将从2026财年的180亿美元增长至2030财年的1440亿美元。甲骨文正积极布局AI推理市场,凭借其作为全球最大企业私有数据托管方的优势地位,有望在云计算领域实现重大突破。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。