至顶网CIO与应用频道 05月11日 北京消息:5月10日,国内领先的新一代数据分析公司 GrowingIO V3.0s 产品上线,推出 5 大场景化模板,支持自定义实时,计算速度提升 50%,并优化数据看板等功能。
全新版本,将有助于业务人员降低数据分析上手门槛,提高分析效率和产出,给业务人员提供更有参考性和可执行的洞察,支持决策。
GrowingIO 创始人张溪梦认为,“此次上线,一直秉承 GrowingIO 产品理念,贴近公司内部一线业务人员需求,解决实际的业务问题,降低成本,提高数据分析效率,促进业务更好增长。”
一、场景化模板:一键生成专属数据看板
在实际的工作中,产品、运营和市场人员经常会遇到的问题是,不知道怎样建立一个系统化、有业务意义的数据分析体系,上手较难。
GrowingIO 3.0s 版本推出了业务场景模板,包括渠道分析场景、落地页分析场景、用户留存分析场景、APP版本更新分析场景和用户活跃分析场景。
场景分析模板大大降低了业务人员做数据分析的门槛,基于 GrowingIO 全量数据采集技术支持,有数据就有模板,就可以做相应的、系统的数据分析。
与此同时,GrowingIO 3.0s 版本的看板支持将事件分析、漏斗分析、留存分析放到一个报表中,不需要在分析工具之间跳转,按照业务分析需求,将数据分析的图表集中展示和使用,优化了数据分析体验。
二、自定义实时数据监测:支持分钟级项目监控
一个典型的应用场景,各大互联网金融、电商、在线旅游等网站 / App 大促时,业务人员可以在一个大屏幕上同时看实时数据。
即时监测整体及各个渠道的流量、转化,随时调整营销策略,无需被动等待数据或工程部门事后提供数据,造成事后分析,效率低下,数据无法真正服务业务。
GrowingIO 自定义实时分析不但可以查看 pv,并且能按照业务需求,按照某一自定义指标即时监测其趋势,随时调整营销策略,降低获客成本,提高渠道 ROI。
目前,在国内只有 GrowingIO 一家能够支持在产品界面直接添加指标进行实时数据监测,这主要源于其背后基于无埋点的全量数据采集技术。
针对此前数据分析产品需手动埋点、数据采集不全、核心业务数据无法保留、工程量繁重、制图生成耗时漫长、业务人员无法自主按需分析、无法对用户行为进行实时深层分析等行业七大痛点,GrowingIO 采用无埋点数据采集技术,全面收集,一键出图,实现实时数据分析,为企业提供高级定制分析解决方案,创造全新数据分析产品。
三、强大的第二代数据处理引擎:计算速度提升 50%
本次产品更新搭载着 GrowingIO 强大的第二代数据处理引擎,通过数据模型优化与自主研发的数据压缩存储技术,极大的提升了数据处理和查询速度,每秒处理数据能力提高 50%,小时数据计算速度提升 50%,回溯任务的计算速度提升 90%,支持更加丰富的维度分析,支持会话级别的维度归因计算。
在 GrowingIO 数据处理量已到达到每天千亿级别的情况下,保证用户能够更快速、更准确的获取各类分析数据。
好文章,需要你的鼓励
大数据可观测性初创公司Monte Carlo Data推出全新Agent Observability产品,为AI应用提供全方位数据和AI可观测性。该工具帮助团队检测、分类和修复生产环境中AI应用的可靠性问题,防止代价高昂的"幻觉"现象,避免客户信任度下降和系统宕机。新产品采用大语言模型作为评判器的技术,能够同时监控AI数据输入和输出,提供统一的AI可观测性解决方案。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
网络安全公司Aikido披露了迄今最大规模的npm供应链攻击事件。攻击者通过钓鱼邮件获取维护者账户凭证,向18个热门JavaScript包注入恶意代码,这些包每周下载量超过26亿次。恶意代码专门劫持加密货币交易,监控浏览器API接口将资金转移至攻击者地址。受影响的包括chalk、debug等广泛使用的开发工具库。虽然攻击在5分钟内被发现并及时公开,但专家警告此类上游攻击极具破坏性,可能与朝鲜黑客组织相关。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。