至顶网CIO与应用频道 05月11日 北京消息:5月10日,国内领先的新一代数据分析公司 GrowingIO V3.0s 产品上线,推出 5 大场景化模板,支持自定义实时,计算速度提升 50%,并优化数据看板等功能。
全新版本,将有助于业务人员降低数据分析上手门槛,提高分析效率和产出,给业务人员提供更有参考性和可执行的洞察,支持决策。
GrowingIO 创始人张溪梦认为,“此次上线,一直秉承 GrowingIO 产品理念,贴近公司内部一线业务人员需求,解决实际的业务问题,降低成本,提高数据分析效率,促进业务更好增长。”
一、场景化模板:一键生成专属数据看板
在实际的工作中,产品、运营和市场人员经常会遇到的问题是,不知道怎样建立一个系统化、有业务意义的数据分析体系,上手较难。
GrowingIO 3.0s 版本推出了业务场景模板,包括渠道分析场景、落地页分析场景、用户留存分析场景、APP版本更新分析场景和用户活跃分析场景。
场景分析模板大大降低了业务人员做数据分析的门槛,基于 GrowingIO 全量数据采集技术支持,有数据就有模板,就可以做相应的、系统的数据分析。
与此同时,GrowingIO 3.0s 版本的看板支持将事件分析、漏斗分析、留存分析放到一个报表中,不需要在分析工具之间跳转,按照业务分析需求,将数据分析的图表集中展示和使用,优化了数据分析体验。
二、自定义实时数据监测:支持分钟级项目监控
一个典型的应用场景,各大互联网金融、电商、在线旅游等网站 / App 大促时,业务人员可以在一个大屏幕上同时看实时数据。
即时监测整体及各个渠道的流量、转化,随时调整营销策略,无需被动等待数据或工程部门事后提供数据,造成事后分析,效率低下,数据无法真正服务业务。
GrowingIO 自定义实时分析不但可以查看 pv,并且能按照业务需求,按照某一自定义指标即时监测其趋势,随时调整营销策略,降低获客成本,提高渠道 ROI。
目前,在国内只有 GrowingIO 一家能够支持在产品界面直接添加指标进行实时数据监测,这主要源于其背后基于无埋点的全量数据采集技术。
针对此前数据分析产品需手动埋点、数据采集不全、核心业务数据无法保留、工程量繁重、制图生成耗时漫长、业务人员无法自主按需分析、无法对用户行为进行实时深层分析等行业七大痛点,GrowingIO 采用无埋点数据采集技术,全面收集,一键出图,实现实时数据分析,为企业提供高级定制分析解决方案,创造全新数据分析产品。
三、强大的第二代数据处理引擎:计算速度提升 50%
本次产品更新搭载着 GrowingIO 强大的第二代数据处理引擎,通过数据模型优化与自主研发的数据压缩存储技术,极大的提升了数据处理和查询速度,每秒处理数据能力提高 50%,小时数据计算速度提升 50%,回溯任务的计算速度提升 90%,支持更加丰富的维度分析,支持会话级别的维度归因计算。
在 GrowingIO 数据处理量已到达到每天千亿级别的情况下,保证用户能够更快速、更准确的获取各类分析数据。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。