至顶网CIO与应用频道 05月11日 北京消息:5月10日,国内领先的新一代数据分析公司 GrowingIO V3.0s 产品上线,推出 5 大场景化模板,支持自定义实时,计算速度提升 50%,并优化数据看板等功能。
全新版本,将有助于业务人员降低数据分析上手门槛,提高分析效率和产出,给业务人员提供更有参考性和可执行的洞察,支持决策。
GrowingIO 创始人张溪梦认为,“此次上线,一直秉承 GrowingIO 产品理念,贴近公司内部一线业务人员需求,解决实际的业务问题,降低成本,提高数据分析效率,促进业务更好增长。”
一、场景化模板:一键生成专属数据看板
在实际的工作中,产品、运营和市场人员经常会遇到的问题是,不知道怎样建立一个系统化、有业务意义的数据分析体系,上手较难。
GrowingIO 3.0s 版本推出了业务场景模板,包括渠道分析场景、落地页分析场景、用户留存分析场景、APP版本更新分析场景和用户活跃分析场景。
场景分析模板大大降低了业务人员做数据分析的门槛,基于 GrowingIO 全量数据采集技术支持,有数据就有模板,就可以做相应的、系统的数据分析。
与此同时,GrowingIO 3.0s 版本的看板支持将事件分析、漏斗分析、留存分析放到一个报表中,不需要在分析工具之间跳转,按照业务分析需求,将数据分析的图表集中展示和使用,优化了数据分析体验。
二、自定义实时数据监测:支持分钟级项目监控
一个典型的应用场景,各大互联网金融、电商、在线旅游等网站 / App 大促时,业务人员可以在一个大屏幕上同时看实时数据。
即时监测整体及各个渠道的流量、转化,随时调整营销策略,无需被动等待数据或工程部门事后提供数据,造成事后分析,效率低下,数据无法真正服务业务。
GrowingIO 自定义实时分析不但可以查看 pv,并且能按照业务需求,按照某一自定义指标即时监测其趋势,随时调整营销策略,降低获客成本,提高渠道 ROI。
目前,在国内只有 GrowingIO 一家能够支持在产品界面直接添加指标进行实时数据监测,这主要源于其背后基于无埋点的全量数据采集技术。
针对此前数据分析产品需手动埋点、数据采集不全、核心业务数据无法保留、工程量繁重、制图生成耗时漫长、业务人员无法自主按需分析、无法对用户行为进行实时深层分析等行业七大痛点,GrowingIO 采用无埋点数据采集技术,全面收集,一键出图,实现实时数据分析,为企业提供高级定制分析解决方案,创造全新数据分析产品。
三、强大的第二代数据处理引擎:计算速度提升 50%
本次产品更新搭载着 GrowingIO 强大的第二代数据处理引擎,通过数据模型优化与自主研发的数据压缩存储技术,极大的提升了数据处理和查询速度,每秒处理数据能力提高 50%,小时数据计算速度提升 50%,回溯任务的计算速度提升 90%,支持更加丰富的维度分析,支持会话级别的维度归因计算。
在 GrowingIO 数据处理量已到达到每天千亿级别的情况下,保证用户能够更快速、更准确的获取各类分析数据。
好文章,需要你的鼓励
微软正与OpenAI进行高级谈判,旨在确保即使OpenAI实现通用人工智能后仍能继续使用其技术。据报道,双方谈判进展积极,可能在几周内达成协议。该协议将为OpenAI向完全商业化企业转型扫清关键障碍。微软已投资137.5亿美元,希望在重组后的公司中获得更大股份,谈判涉及30%左右的股权比例,同时确保Azure和Copilot等服务的技术供应安全。
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
AI初创公司Arcee.ai发布45亿参数的企业级AI模型AFM-4.5B,采用严格筛选的清洁数据训练。该模型专为商业和企业用途设计,年收入低于175万美元的企业可免费使用。相比数百亿参数的大模型,AFM-4.5B在保持强劲性能的同时具备成本效益和监管合规性。模型支持云端、本地和边缘部署,内置函数调用和智能体推理功能,旨在满足企业对速度、主权和规模的需求。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。