组织可能已经成功在业务中采用商业智能或分析实践。但获得大数据的成功需要不同的方法。
如果组织想投资大数据功能,那么可能会问自己,谁应该在大数据团队,以及这个团队首先工作的项目应该是什么?如何具有将团队组合在一起的能力来解决大问题?
组织可能会发现自己遇到了这些类型的问题,无论他们是从大数据开始,还是已经有项目正在进行中。行业专家Tamara Dull和Anne Buff建议组织在想要成功获取大数据的同时,需要围绕对组织的大数据能力和人员配置进行思考。
他们应该知道自己一直在思考如何在多年的大数据项目中取得成功。
Anne Buff是商业智能、数据挖掘与统计分析的领先软件提供商SAS公司最佳实践的业务解决方案经理和思想领袖。Tamara Dull是SAS公司最佳实践新兴技术总监。Buff和Dull介绍了组织如何解决在组合大数据业务时出现的诸多困难,同时他们还将在Interop ITX的会议中分享解决这个问题的办法,旨在帮助任何人正在开始或在大数据项目中间的组织。
“大数据不是新事物,”Dull说,“数十年来,我们已经有了很多数据,而且已经在处理这些技术了。所有这些技术都在开发中,其中很多都是开源的,它们能够实现能力混合和匹配我们所有的数据,组织可以获取社交媒体数据,并将其与您其CRM数据进行混合,或与其与销售记录进行混合。
Dull说,“这不是人工智能2.0,这并不一样。”Buff表示,这些努力不会取代组织的人工智能和分析程序。
组织在大数据开始时遇到的一些问题是导致这些项目取得成功的因素,而这与帮助人们通过商业智能取得成功的因素不同。商业智能和分析实践经常被安置在卓越中心。但组织也许并不想要或需要一个伟大的数据中心,也许只是需要一辆公共汽车。
组织的想法是,需要在每个项目的大数据公共汽车上使用不同的人员。使用这些公共汽车,组织可以在需要他们的项目时加载这些人员。他们只需要乘坐,只要你需要他们的项目。在项目结束后,小组下车,公共汽车现在准备好迎接下一个项目和下一个团队成员。
组织建立的成功大数据团队真的是为每个项目创建的特别小组。并非所有成员都在整个项目中。此外,会员也可能会从一个项目转向另一个项目。
当然,组织需要一定的角色。例如,组织总是需要一个利益相关者或执行发起人。但一个项目的利益相关者或执行发起人可能是首席营销官,而下一个项目可能要求是首席技术官或首席信息官成为利益相关者或执行发起人。这一切都取决于项目是什么。这是公共汽车的另一个重要方面。
在决定谁来加入任何给定项目的公共汽车之前,组织必须询问自己其正在追求业务项目的目标,然后如何实现该计划。只有这样,才应该问公车上需要什么成员。
“根据当前项目的范围,正在运行大数据团队将要转移的项目是什么,”Dull说,“这不是一次完成的事情,组织建立其大数据团队,每次在为组织追求不同的机会时,其公共汽车上的人员都会改变。”
Dull说,这个方法比较敏捷,它要求组织的团队根据项目改变。反过来,这也意味着团队也将是员工,自由职业者,承包商和外部服务人员的组合。
一些功能甚至整个项目可能会外包,这取决于项目。“大数据项目的本质就是有些会消亡,而其他人将会走得更远。”Buff说。这就是为什么创建一个架构,使大数据实践更加灵活的至关重要的原因。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。