流行的术语指的是在日常经营活动中收集的大量信息。根据行业的不同,这可能是从作物产量到患者,到人口统计学以及其间的一切。那么如何利用大数据改变农业?
1.无人机巡逻
监测数百亩的农作物可能是一项艰巨的工作,要求数十人步行或驾车在田地中检查病虫害。无人机组可以做同样的工作,而只由一两个人管理。根据无人机的规格,他们也可以配备如下:
•土壤取样器-可用于测试营养水平,土壤水分等。
•叶片采样器-小型叶片可以采集可通过无人机或实验室设置进行分析的植物样品。
•有害生物捕获设置-如果害虫成灾,获取样品可以更容易地确定最佳灭绝方法。
太阳能无人机可以在白天一直巡逻整个农场,而不需要停止充电,只有在太阳下山的夜晚才返回基地。
2.养分管理
收集有关土壤养分水平的信息是农业工作的主要部分,无论其规模大小。通过收集大量信息,很容易确定哪些地域需应用肥料或施肥增中营养来确保最佳生长。这个数据收集的问题在检测到问题之后,然后进行修复。
通过对这些信息应用大数据和预测算法,计算机可以预测养分问题,然后才能确定可能危及作物产量的重大问题。
3.作物产量预测
通过研究前几年的产量和应用大数据,能够以相对较高的准确度来预测作物在给定年份或给定领域产生的最高产量。
如果前几年收集的信息准确无误,可以确定最好的播种日期,施肥或除草剂的最佳时间,以及收获年份的最佳时间,确保最高产量变得更容易。
4.供应链
大量数据已经被应用于各行各业的供应链。在农业方面,从种子,化肥,除草剂,杀虫剂等作物的供应来源到最终送到农业杂货店,这都是供应链的一部分。所有这些数据都是可收集的。这个信息是每个农场的重要组成部分,但一旦收集,它也可以作为大数据的一部分使用。
通过使用预测分析,农场主可以预测库存和化学品使用情况。这使得他们只能订购所需的耗材,而不用订购额外的物品,并消除他们可能会或可能永远不会使用备份库存,因为将不得不为存储的库存支付费用。
5.天气情况
虽然人们可以控制农业所有的变量,但天气总是会在一定程度上变化(不了解季节性天气模式)。炎热的夏天需要更多的灌溉,而潮湿的月份可能导致作物霉变或霉菌生长。
而天气预报的能力有限,但人们可以预测,不同的作物将如何对不断变化的天气模式,并做出反应,以及如何最佳地补偿这些变化。
无论人们是否愿意承认,气候正在发生变化,农业必须适应未来的良好收益。农业是一个不断变化的领域,而大数据可以帮助农民提高收入,适应自然大自然中的任何事情。大数据与预测分析结合使用时,可以帮助提高管理能力。未来,无人机和大数据可能会改变农民的工作方式,技术进步将有助于农场适应和饲养场获得更好的成本效益。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。