短短几年的时间,物联网(IoT)已经彻底改变了众多企业的业务发展模式。据麦肯锡预估,到2025年,IoT应用市场每年将高达11万亿美元 。
每天的每一分钟,IoT设备——从智能手机到设备传感器,到零售商店的“智能”货架——所产生的有价值的数据蜂拥至我们的服务器中,经过提取、存储和分析,最终成为战略资产。几乎可以听到管理层胜利的欢呼,因为他们看着源源不断的实时数据流入,想想着“凭借这些数据和这些洞察,我们的竞争对手不可能有机会了。”
但这里的问题是:太多的组织对这些数据无所作为。是的,智能设备收集的数据本身是强大的,但与整体分析基础架构集成在一起更为困难。企业真正需要的是一个能够利用其物联网数据强大功能的综合分析策略,而不仅仅是“IoT数据战略”。
整合行动:案例研究
我们来看一个例子。某公司为了监控餐厅设备,已经安装了智能传感器来跟踪客户的冰箱、烤箱和其他厨房设备。在评估其客户设备的性能时,该公司注意到,一些餐厅的制冰机超乎预期地过早出现问题。
当仅查看其物联网数据——包括压缩机温度、每天制冰量和使用量、运行时间,根本无法找出问题的根源。只有将眼光放到IoT网络以外,才发现失败的根本所在:在烘烤面包时,酵母残留在了制冰机的压缩机线圈上。只有从更大的视角观察问题时,才最终确定了问题的根源。
从“为什么”开始
在组织开始制定其物联网数据战略之前,一个至关重要的问题是,“为什么”。通过使用这些物联网数据来实现哪些目标? 是否逐案提供更好的客户服务? 还是改善整体品牌体验? 为了回答这个问题,我们需要遵守整体业务策略。
回到案例中的这家餐厅设备公司,其目标可能是将自己的品牌打造成工业厨房设备的首要供应商,提供零故障承诺。为了实现这一目标,需要进行预测分析——不仅要分辨出设备是否有潜在的故障危险,而且要启动关闭循环过程,以确保在事态发展中处于主动地位。
例如,如果一台设备在未来三个月内有25%的失败机会,则该操作项目可能与服务经理联系,并建议他安排提前维修。 如果失败的机会接近90%,可以自动安排服务。这是服务经理所做的,无论如何,节省了他拿起电话的麻烦。
建立良好循环
与涉及技术的所有决策一样,我们利用我们的物联网数据的过程必须从我们的使命开始,以提供更大的业务价值。
我们需要以与类似产品发布的方式处理物联网数据。现在,我已经参与了足够的产品发布,了解到如果以技术为起点,产品应该注意什么。技术是让我们实现业务目标的方式,从来不是我们正在瞄准的目标。 这意味着需要建立IT部门以外的团队,并引进了解客户的团队成员。
这意味着将客户的需求和整体业务目标成为每个决策的前提。这意味着需要通过评估结果,以确保物联网数据继续符合公司的愿景。如果我们能够做到这一点,我们将很好地实现一个战略,利用物联网数据的力量来改变我们的组织。
好文章,需要你的鼓励
随着数字化时代的到来,网络安全威胁呈指数级增长。勒索软件、AI驱动的网络攻击和物联网设备漏洞成为主要威胁。企业需要建立全面的风险管理策略,包括风险评估、安全措施实施和持续监控。新兴技术如人工智能、区块链和量子计算为网络安全带来新机遇。组织应重视员工培训、供应链安全、数据治理和事件响应能力建设。
滑铁卢大学研究团队开发出ScholarCopilot,一个革命性的AI学术写作助手。该系统突破传统"先检索后生成"模式,实现写作过程中的动态文献检索和精确引用。基于50万篇arXiv论文训练,引用准确率达40.1%,大幅超越现有方法。在人类专家评估中,引用质量获100%好评,整体表现优于ChatGPT。这项创新为AI辅助学术写作开辟新道路。
AWS Amazon Bedrock负责人Atul Deo正致力于让人工智能软件变得更便宜和更智能。他在12月re:Invent大会前只有六个月时间来证明这一目标的可行性。Deo表示AI领域发展速度前所未有,模型每几周就会改进,但客户只有在经济效益合理时才会部署。为此,AWS推出了提示缓存、智能路由、批处理模式等功能来降低推理成本,同时开发能执行多步骤任务的自主代理软件,将AI应用从聊天机器人转向实际业务流程自动化。
哥伦比亚大学研究团队发布NodeRAG技术,通过异构图结构革新智能问答系统。该方法将文档信息分解为7种节点类型,采用双重搜索机制,在多个权威测试中准确率达89.5%,检索效率提升50%以上,为智能信息检索技术带来重大突破。