时至今日,人工智能已经不再仅仅是科幻小说的模糊概念——而开始真正改变我们的生活、工作乃至存在的方式。作为数据科学、分析以及技术改进与创新所无法回避的终极产物之一,AI拥有极为可观的发展潜能,有些从业者甚至认为有理由跳过传统智能数据技术而直接投资AI方案。
然而,至少单就2017年而言,我们仍有再观望一阵的理由。
1. AI仍不完美
与任何一种潜力巨大的技术产物一样,AI同样吸引到众多投资者、风投人士、初创企业及商业领袖的关注,并做好准备与其工作乃至生活场景相结合。
但问题在于,AI目前仍处于发展阶段,或者说仍需要时间学习并证明自身价值。客观地讲,即使最为先进的AI成果恐怕也要在三年后才能在市场上有所建树。
另外,假定您已经拥有一套极为惊人的AI引擎驱动型演示系统。但如果投资者不能将其接入自己的笔记本,那么一切只能是空谈。
因此AI就目前而言只能算是画出了美妙的大饼,但平心而论其仍然属于利基性产物——直到正式普及之前,任何整合尝试都有可能以失败告终。
2.分析仍然影响巨大
根据Simbla的调查结果,分析仍然拥有旺盛的生命力且能够带来等待发掘的可观价值。作为由数据与信息转向AI算法的通道,分析技术的目标更契合当前分析软件与算法所能达成的效果。
除了URL挖掘及社交媒体报告等基础功能,企业亦开始利用分析方案帮助自身更为灵活地打理数字化业务,包括市场营销与搜索引擎优化等。
能够在作为一切数字化资产基础的二进制空间内运行,意味着未来的分析工作除了提供与市场相关的报告与模式判断结论外,亦将带来更可观的预测能力。
这种预测市场未来动向的能力无疑将吸引更多企业继续坚守分析这一阵地,并在未来两到三年内再逐步向更成熟的AI平台转移。
3.机器学习需要过程
建立业务部门是一种线性过程,而我们目前无法解决其中的一切难题以提供真正完美且能够切实用于整合的AI成果。
作为AI训练素材的当然是数据与分析——而这两大领域仍然在逻辑性与定义结论层面处于摸索阶段。
为了真正发挥AI的优势,我们必须收集大量数据,并构建起能够以直观方式解释信息以实现预测分析的工具。
而直接投身AI无异于没学会走就急着跑。虽然已经在一定程度上成为现实,但AI目前的状况仍远不能令人满意。
4. 潜在分工
尽管我们很难准确预测业务的未来发展态势,但就目前来看,分析、数据与AI几项技术很可能各自独立地实现分工与发展,而非朝着统一的智能化方向迈进。
行业分工确实会带来一些有趣的机遇,特别是对于那些更倾向于投资成熟市场而非尚缺乏实践经验的AI方案的人们而言。
投资者与企业运营者在未来几年内将继续面对此类难题,即是将资金投入到影响力更大且更具实效的分析领域,还是押注在一切尚不确定的要工智能身上。
5.消费者认知
对于企业拥有者而言,在分析与AI之间作出选择主要应考虑到其主要受众的当前状态与认知水平等因素。
年轻些的从业者可能更信任并愿意通过测试了解直观的数字化解决方案。但如果您的营销对象是更为成熟的上一代用户,则采用分析功能也许可以更好地提升业务绩效。
投身于AI确实有种致命的吸引力,但这一方面并不证明分析技术会因此而逐渐消亡; 相反,二者都会不断成长并得到改进。另外,至少就目前来看,分析技术的实效性无疑拥有更为丰富的客观指标作为支持。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。