Gartner的分析师Donna Scott说,云计算已经进入市场了10多年了,但是人们对此仍有一些不明就里的地方。她在最近的CIO网络研讨会上试图消除这种认知混乱。关于关公共和私有云,人们普遍存在两个疑问。
什么类型的数据往往用于公共云和私有云?
有几种类型的数据是大多数公司不想放在公共云里的,Scott说。一个是知识产权。原因很简单:他们不想共享这些数据,其他关键的IT运营设施也是如此。 “你不想共享网络,你不想共享存储空间,你不想共享计算,”Scott说。
企业通常将这些数据类型以及个人可识别或受监管的信息放在私有云中——无论是在内部还是在托管设施中,他们租用空间但拥有硬件。 Scott说,一些公共云提供私有云的能力,所以有较少的共享,“但你必须仔细分辨清楚,决定你想分享什么,你不想分享什么,并作出评估。”
企业应如何计算公有云和私有云的总体拥有成本?
“你需要衡量内部以及云端提供服务的成本,”Scott说。 这样,企业可以对比两者并做出决定。 以电子邮件为例。如果公司有一个内部电子邮件应用程序,可以确定每个用户的成本——设备成本、许可成本、维护和保持电子邮件运行24/7的成本。
“基本上,你把所有的成本加起来,除以使用的员工人数,就是每个用户的成本,”她说。 做这种类型的计算和分析时,IT部门应该让他们的财务部门参与进来。因为他们大多数不能很好地处理提供IT服务的成本,Scott说。
好文章,需要你的鼓励
ETH Zürich等机构研究人员提出TrustVLM框架,解决视觉-语言模型预测可信度问题。该方法利用模型中存在的"模态差距",创新性地结合图像到文本和图像到图像的相似度,实现无需重新训练即可大幅提升误分类检测性能。在17个数据集的严格测试中,TrustVLM相比现有方法在关键指标上提升显著,同时改善了零样本分类准确率。此成果为AI系统在自动驾驶、医疗等安全关键领域的可靠部署提供了重要保障。
这项研究提出了个性化安全概念,解决大语言模型对不同用户采用统一安全标准的问题。研究团队创建了PENGUIN基准测试集评估模型在处理高风险场景时的个性化安全能力,并开发了RAISE框架高效获取关键用户信息。实验表明,提供用户背景可使安全分数提高43.2%,而RAISE框架通过平均仅2.7次交互即可提高安全分数31.6%。这一创新方法将AI安全从"一刀切"转向"个性定制",为高风险领域的AI应用提供了新思路。
明尼苏达大学研究团队提出了一种创新方法,通过回合级信誉分配显著提升大语言模型(LLM)智能体的多回合推理能力。传统方法只对整个过程进行评价,而他们的MT-GRPO算法能够精确评估每个决策步骤的价值,就像为每一步提供具体反馈。在维基百科搜索工具使用场景中,该方法实现了100%的工具执行成功率和50%的答案精确匹配率,远超传统方法。这一突破不仅提高了AI在多步骤任务中的表现,也为开发更复杂的AI系统提供了重要思路。
这篇研究介绍了PISCES——一种能精确从大语言模型参数中移除特定概念知识的创新技术。与现有方法不同,PISCES通过解缠器模型识别概念相关特征,直接编辑模型参数,实现了更精准的知识移除。在Gemma和Llama模型上的测试表明,该方法不仅有效降低了目标概念的准确率(低至7.7%),还保持了模型在无关领域的高性能,并显著提高了对"重新学习"的抵抗力。这一突破为AI系统的安全部署和合规使用提供了新的可能性。