脆弱的项目管理技能,错过的时间线,敏感的员工——其中的任何一条都可能破坏你羽翼未丰的DevOps环境。
DevOps混合了任何由公司应用开发和系统运营团队一起执行的任务。这简单的定义掩盖了向DevOps环境过渡的复杂性。真的,CIO们向DevOps过渡所面临的潜在问题很多。这些地雷所在范围从技术(比如测试环境或架构的错误)到文化(比如高估速度而低估质量),再到管理(没有获得执行官的支持)。
这里,我们的专家列出了在向DevOps环境过渡时易犯的四种常见错误,并指出如何避免它们:
错误1:被DevOps标题所迷惑
当技术执行官建立他们DepOps能力时,常常是从雇佣DevOps工程师开始。这不一定是最佳方法。DevOps工程师通常会偏向于DevOps技能的某一个方面。也就是说,更倾向于运营或者偏好开发,Shalom Berkowitz说。他是技术人事公司Mondo负责技术招聘的初级团队领导。
首先评估你的DevOps环境需要什么技能,并在寻找候选人时特别提及。譬如,说明在Linux中的经验需要,或者Ruby的知识,或者Puppet的合格记录,而不是招聘泛泛的DevOps人才,并假设申请人有符合需求的经验。
错误2:忽略时间线
无可否认,传统的瀑布式方法下工作更加封闭,更有秩序,James Stanger说,他是非营利性贸易协会CompTIA的高级产品主管。 相较而言,DevOps从本质来看就有让人混淆的可能,因为“每人都能影响到其他人的工作,”他说。 “引起的混乱会影响合理化开发,”Stanger说。也可能招致范围蔓延,因为每人都有可能在他们迭代时添加他们自己的好想法。 “他们会倾向于认为那不再是线性的,不再有时间线,我们只是一起工作,”他说。 经理需要在DevOps环境中坚持强烈的项目管理原则,忠诚于文档和截止日期以避免失控项目。 “发生变化的是实施时间表,不是对时间线的需要,”他补充道。“你在以更加循环的方式做事情,但是你仍然要朝着时间线前进。”
错误3:过快过多地向DevOps过渡
Jay Lyman是451 Research 的DevOps&IT Ops开发部门的首席分析师,他说他和他的同事们已经看到,组织将DevOps原则应用到太多的项目和/或太复杂的项目上,直到DevOps团队有足够的经验和专业知识来管理这些项目。 Lyman建议企业从小的开始,先将DevOps应用到一些容易实现的目标----通常是新的方案或者新的应用----来建立起所需的技能和流程。 他补充说,许多组织通过寻求和借鉴他们的网络运营和移动团队的战略实现了早期的成功,因为这些领域的性质,它们已经快速迭代和使用了DevOps原则。
错误4:忘记反馈回路
反馈回路驱动DevOps,但有时候关键利益相关者(例如数据库管理员和安全专家)被排除在外,导致一个有缺陷的最终产品,Lyman说。 “确保这个反馈循环中没有缺失链接,因为让这些利益相关者参与是你进步的方式,”他说。 同样,Stanger表示,组织需要帮助他们的DevOps人员了解反馈的重要性,并确保他们不会将其视为无端的批评。 “反馈不能被视为一个负面的事情,它必须被视为一个机会,以解决需要改进的事物,”他说。
好文章,需要你的鼓励
Atlassian、Intuit和AWS三大企业巨头正在为智能代理时代做准备,重新思考软件构建方式。当前企业API为人类使用而设计,未来API将成为多模型原生接口。Intuit在QuickBooks中应用自动发票生成,使企业平均提前5天收款;AWS通过AI辅助迁移服务显著提升效率;Atlassian推出内部员工入职代理和客户代理,节省大量时间成本。专家强调需要建立强大的数据架构和信任机制。
这项研究首次系统评估了AI代码智能体在科学研究扩展方面的能力。研究团队设计了包含12个真实研究任务的REXBENCH基准,测试了九个先进AI智能体的表现。结果显示,即使最优秀的智能体成功率也仅为25%,远低于实用化要求,揭示了当前AI在处理复杂科学推理任务时的显著局限性。
MIT研究发现,使用生成式AI完成任务时,大脑运作方式与单纯依靠自身思考存在显著差异。研究显示,使用ChatGPT等工具的用户记忆力更差,神经连接活动减少,对所写内容的回忆能力明显下降。虽然AI工具能提高效率,但可能导致用户缺乏对知识的深度理解和掌控感。研究强调需要更多科学数据来了解AI使用对人类认知的长期影响。
俄罗斯莫斯科国立大学研究团队开发出MEMFOF光流估计新方法,在保持顶尖精度的同时将1080p视频分析的GPU内存消耗从8GB降至2GB,实现约4倍内存节省。该方法通过三帧策略、相关性体积优化和高分辨率训练在多个国际基准测试中取得第一名成绩,为高清视频分析技术的普及奠定基础。