时至今日,在企业业务中引入私有/混合云策略早已不是什么新鲜事。然而,我们该如何确保自己的云策略能够获得成功?很明显,我们首先需要明确如何量化成功标准。
1. 企业成员(通常是指业务及应用程序所有者)是否自愿使用云。
2. 您需要有能力向其证明将应用运行在云中可实现助益。
在实现上述目标后,大家还需要提供云运营指标以反映新型业务用例。下面我们将一同了解此类指标:
1. 营收与营收增长
2. 成本与预期成本增长
3. 利润(营收减去成本)
4. 市场份额与市场份额增长
5. 新型目标市场增幅
6. 资本回报
通过对业绩的评判,企业能够建立起这样一套良好的成功量化指标。当然,以上只是财务角度的量化标准。不过作为这些指标的核心属性,可以看到其反映了企业的运营状况。因此,我们需要将注意力集中在业务表现与云绩效这两大方面。
如何衡量您的私有/混合云绩效
首先需要了解站在客户角度考虑问题。客户希望我们的云服务实现怎样的效果? 要回答这个问题,我们要明确自己当初为何选择使用私有/混合云。作为主要理由之一,这可能是因为我们无法从租户共享式公有云中获取必要的可靠性与性能。因此,您的受众也许希望云策略能够满足以下要求:
1.保证可用性并获得用于衡量及证明该可用性的指标
2. 保证性能并获得用于证明该性能的指标
3. 保证通量并获得用于证明该通量的指标
在以上三条中,可用性是最易于理解及量化的指标。我们可以轻松利用现有工具检测Web服务器的运行状况,并衡量成功完成事务的具体百分比。通过这一方式,我们也能够轻松了解用户未进行实操时,应用是否仍运转良好。
但在性能与通量方面,量化工作往往变得比较复杂。系统管理员一般会查看各类资源利用率来衡量性能与通量,包括CPU、内存、网络以及存储(IOPS)。问题在于,动态与虚拟化系统中的资源利用率往往无法准确反映性能水平。在这些环境中,我们需要使用新的定义方式:
1. 性能: 对于私有/混合云,性能定义应当为重要事务及应用程序的事务响应时间。对于支持应用程序及事务之基础架构内的全部层,性能定义则应为基础架构中各个层的等待时间。具体来讲,这意味着支持各个事务与应用的网络与存储组件的实际延迟。
2. 通量: 对于私有/混合云,通量的定义应为单位时间内完成的工作量。对于事务,通量定义则可为每秒调用次数。对于网络,其可为每秒的数据包或字节数。在存储层中,通量通常为每秒I/O操作(即IOPS)。
私有/混合云中的仪控架构
为了能够收集堆栈内各层的性能与通量指标,您需要建立一套仪控架构。大家需要枚举堆栈内各个层与各层组件,而后确定如何获取各层中各组件所需的性能(响应时间与延迟)以及通量指标。具体如下图所示。
一旦您得到了各项关键性指标来源,那么真正艰苦的工作即将开始。单纯收集全部指标并将其纳入大数据后端,并将指标结果交付至用户处以了解基础设施对事务的支持情况还远远不够。为了能够实现真正有效的云仪控策略,大家不仅需要在堆栈中的各个层内提供性能与通量指标,同时还需要了解您的基础设施中哪些虚拟及物理元素会随时间推移对各事务提供支持。具体请参见以下图表。
私有/混合云关系图
总结
有效的私有/混合云仪控策略需要在堆栈中的每一层——从事务到磁盘读写——收集性能与通量指标,并将这些指标与支持各个事务及各应用的每一虚拟与物理基础架构拓扑进行关联。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。