企业希望其IoT系统具有超快的响应时间,同时还能享受云的成本和效率优势。来看边缘计算如何将这两种技术结合在一起。 当物联网系统运行在公有云上时,传感器会频繁的将数据发送到存在于该公有云中的数据库。
如果你觉得这听起来有问题,是的,的确有问题。 数据从传感器或设备传输到云所花费的时间通常太长,无法满足物联网(IoT)系统的延迟要求,很多这些IoT系统都依赖于立即响应。
为了解决这个问题,一些设备制造商避免使用公有云,但这意味着IoT系统无法利用云计算的成本效益和资源效率。 边缘计算提供了一种将每一块IoT数据传输回云进行集中处理的替代方案。在边缘计算模型中,数据存储和处理能力被推送到网络的“边缘”,通常驻留在收集数据的设备或传感器内。
然而,该数据和处理通常依旧与公有云存储系统耦合,作为单个的虚拟单元。这有助于消除延迟并增加IoT系统的响应次数。
边缘计算的产生
边缘计算的想法并不新鲜。我们多年来一直在用它解决网络或机器延迟的问题。具体来说,一些边缘计算概念已经出现。一个是cloudlet,来自卡内基梅隆大学的新架构元素,它融合了移动和云计算。
还有一个雾计算,是由思科推出的非集中式计算架构。 问题是IoT应用需要几乎立即对传感器或设备产生的数据做出响应;这允许这些应用程序执行诸如关闭即将过热的冶炼机这样的任务。在数百种用例中,响应时间绝对是IoT系统的关键组成部分,这就是为什么延迟这个概念是如此重要。可靠性和数据处理也至关重要,包括不依赖于与远程云应用程序通信处理数据的能力。
‘边缘’与云在何处碰撞
因此,边缘计算——特别是其与云计算的息息相关性 - 正在成为一种最佳实践。它将云应用架构师从必须把所有数据都发送回公有云这一点上解放出来。然而,边缘计算的核心思想是边缘和公有云在物理上分散,但在虚拟上耦合。 边缘组件在四处移动的时候,数据将自动与云端的集中式数据存储同步。
虽然那些数据可以临时存储在边缘处并在那里处理,但存储在云中的数据会成为真实数据的单一来源。 随着IoT系统和服务不断寻求通往公有云的途径,对于边缘计算的需求也变得越来越重要。虽然边缘计算可能带来新的挑战,尤其是围绕管理和安全方面的挑战,但边缘计算能够满足一种需要,即企业部署IoT系统需要云计算的高效性。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。