企业希望其IoT系统具有超快的响应时间,同时还能享受云的成本和效率优势。来看边缘计算如何将这两种技术结合在一起。 当物联网系统运行在公有云上时,传感器会频繁的将数据发送到存在于该公有云中的数据库。
如果你觉得这听起来有问题,是的,的确有问题。 数据从传感器或设备传输到云所花费的时间通常太长,无法满足物联网(IoT)系统的延迟要求,很多这些IoT系统都依赖于立即响应。
为了解决这个问题,一些设备制造商避免使用公有云,但这意味着IoT系统无法利用云计算的成本效益和资源效率。 边缘计算提供了一种将每一块IoT数据传输回云进行集中处理的替代方案。在边缘计算模型中,数据存储和处理能力被推送到网络的“边缘”,通常驻留在收集数据的设备或传感器内。
然而,该数据和处理通常依旧与公有云存储系统耦合,作为单个的虚拟单元。这有助于消除延迟并增加IoT系统的响应次数。
边缘计算的产生
边缘计算的想法并不新鲜。我们多年来一直在用它解决网络或机器延迟的问题。具体来说,一些边缘计算概念已经出现。一个是cloudlet,来自卡内基梅隆大学的新架构元素,它融合了移动和云计算。
还有一个雾计算,是由思科推出的非集中式计算架构。 问题是IoT应用需要几乎立即对传感器或设备产生的数据做出响应;这允许这些应用程序执行诸如关闭即将过热的冶炼机这样的任务。在数百种用例中,响应时间绝对是IoT系统的关键组成部分,这就是为什么延迟这个概念是如此重要。可靠性和数据处理也至关重要,包括不依赖于与远程云应用程序通信处理数据的能力。
‘边缘’与云在何处碰撞
因此,边缘计算——特别是其与云计算的息息相关性 - 正在成为一种最佳实践。它将云应用架构师从必须把所有数据都发送回公有云这一点上解放出来。然而,边缘计算的核心思想是边缘和公有云在物理上分散,但在虚拟上耦合。 边缘组件在四处移动的时候,数据将自动与云端的集中式数据存储同步。
虽然那些数据可以临时存储在边缘处并在那里处理,但存储在云中的数据会成为真实数据的单一来源。 随着IoT系统和服务不断寻求通往公有云的途径,对于边缘计算的需求也变得越来越重要。虽然边缘计算可能带来新的挑战,尤其是围绕管理和安全方面的挑战,但边缘计算能够满足一种需要,即企业部署IoT系统需要云计算的高效性。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。