数据科学并不属于什么全新学科,但其最近却随着大数据技术的快速发展而日益得到关注。顾名思义,数据科学的主旨在对研究数据——更具体地说,用于指导如何更有效地理解、存储及操纵数据。考虑到众多企业开始意识到数据的社会与经济价值,而处理相关数据任务亦存在着巨大挑战,因此合格的数据科学家开始成为人才市场上的热门资源。
通常来讲,获得数据科学硕士等高级学位足以把大家送入相关职位。数据科学家能够在与大数据相关的任何领域找到工作,包括高校、医疗卫生、科研院所、政府机构等等。下面,我们一同了解其中的三项具体职业发展道路。
1. 数据科学家
人才市场招聘信息中给出的头衔通常为“数据经理”或者“统计学家”等。
无论具体名称如何,数据科学家们需要利用自己的数学及编程技能对数据进行直接处理。数据科学家们需要立足自身职位追踪贯穿项目的全部数据,构建数据存储空间并组织预测建模流程,最终将发现报告给决策者。因此,数据科学家通常需要掌握扎实的编程语言,特别是Python与SQL。
数据科学家目前的平均年薪为11万5千美元,不过入门级从业者的预期薪酬大概在8万美元左右。到2024年,市场对于数据科学家的需求将增长30%,这意味着仍有大量职位等待着后来者。
2. 数据工程师
数据工程师又被称为数据架构师或者数据库管理员,其职能与真正的数据科学家略有区别。事实上,部分数据科学家可能认为,该职位只需要普通的计算机科学学位即可胜任——当然,拥有数据科学专业背景更好。
与其他类型的工程师类似,数据工程师同样需要了解如何利用素材构建解决方案。数据工程师需要熟练掌握数学方法、编程与大数据技术,且能够娴熟地在数据集中处理包含的信息,同时清理不必要或者混乱的信息内容。
同样,数据工程师也应该拥有丰富的Python与SQL经验,而基于Java类框架(如Hadoop)相关技能亦能够让大家在工作中更加如鱼得水。
此类职位的平均入门薪酬为8万1700美元,而行业中的顶级人士能够拿到10万美元。数据工程师职位的增长速度相对较慢,到2024年增量约为11%,但仍高于整体人才市场的平均水平。
3. 数据分析师
尽管“分析师”与“科学家”这两种称为间的界定并不明确,但数据分析师明显与商业实践关联更为紧密。一般来讲,数据分析师可以顺利上手“某某分析师”类职位,包括项目分析师、市场研究分析师、信息安全分析师、商务分析师等等。
数据分析师职位负责帮助未经过数据科学训练的人员理解数据内容。通过创建有吸引力且易于理解的图形、图表或者简单描述语言,数据分析师能够顺利将信息传达给他人。除了统计相关技能,数据分析师还需要具备将数据转换为业务术语及策略的能力。另外,SQL与Excel技能同样必须掌握。
也许由于对于技术性知识的要求相对较低,因此数据分析师的平均年薪也较低,为6万5千美元。不过由于与业务更为贴近,因此分析师们更有机会在行政领域有所建树,从而将自身薪酬提升至六位数。另外,这一领域的职位数量增长率很高,到2024年就业机会将增加30%。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。