ZD至顶网CIO与应用频道 09月06日 北京消息:Teradata天睿公司(Teradata Corporation,纽交所:TDC)宣布为全球最先进的多类型分析引擎推出重要的新部署方案Teradata Aster Analytics on Hadoop。与旧版Aster Analytics需要专用系统相比,企业目前可依托既有Hadoop平台,灵活快速地获取有价值的分析洞察力。
这种方案的灵活性印证了Teradata天睿公司在混合云(Hybrid Cloud)架构上的宏伟战略。该下一代架构具备更高级别的敏捷性、灵活性与系统间整合能力,是一套更加接近于高级分析的开放系统。随着传感器、数字移动设备等物联网(IoT)设备生成海量数据,促使各厂商开发Hadoop等定制化架构方案。
ESG Global高级分析师Nik Rouda表示:“众多企业尝试在协作的多租户环境下将高级分析功能纳入既有基础设施。Teradata天睿公司依托Aster Analytics on Hadoop恰好满足了企业需求。新部署方案帮助用户配置分析环境,并着手分析数据湖中存储的数据。企业能够缩短创造价值的时间,满足不同企业用户社区的各种分析需求,并创造显著的经济优势。”
开源高级分析组件包的设计通常无法兼顾业务分析师需求,这些软件包需要使用、部署和维护的专业技能。虽然高级分析工具经调整可以与Hadoop平台一起工作,但这些工具未经过专门设计,无法在Hadoop平台上运行。因此,这些工具通常需要将数据提取到专用平台,在用户、数据和使用案例上的可扩展性不足。
Cloudera公司首席战略官兼联合创始人Mike Olson表示:“Apache Hadoop的核心竞争力是可拓展性及能够支持各种分析和处理引擎。Teradata Aster Analytics on Hadoop展现分析技术实质的进步,它为客户带来功能强大的新方案,满足客户对高标准分析应用的需求。”
Teradata Aster Analytics在同一界面和语法框架内提供文本、路径、模式、图像、机器学习、统计等功能。新方案具备灵活部署能力和其它显著优势:
Aster Analytics on Hadoop
l 扩展Hadoop数据湖的使用范围和价值——Aster Analytics帮助业务分析师运用SQL和R语言技能访问Hadoop平台,使得Aster支持分析社区更多用户。
l 在Hadoop平台上本地运行——勿须将数据从Hadoop迁移到分析服务器,用户能够规避与数据迁移相关的各项成本、延迟及安全性风险,并加速数据分析过程。
l 在Hadoop平台上迅速实施分析——用户能够在同一Hadoop集群内对同一组数据单独开发沙盒和生产环境。此外,Aster提供应用中心(AppCenter),帮助分析师为商业用户搭建基于Web的界面。
Teradata 天睿公司产品和营销副总裁Chris Twogood 表示:“在Hadoop平台上本地运行Aster Analytics是行业重大突破,能够显著提升所有企业的Hadoop技术投资回报率。Aster一贯致力于帮助分析师进行大规模大数据分析。但是现在随着Hadoop平台高级分析方案首次全面普及,业务分析师和数据科学家将能够访问并运用路径、机器学习和图像算法分析数据。Teradata全新的Hadoop部署方案将以更快的节奏、最低的成本和风险,为更多用户提供敏捷的企业就绪型分析能力。”
Teradata Aster Analytics on Hadoop 7.0通用版将于2016年10月正式发布。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。