收集数据后,在批处理模式数据集市下聚集和查询数据,以获取商业智能,这是实际应用大数据及分析的主要方式。它还有助于为新兴国家的人们确保有一个公平的竞争环境,为他们节省时间,并且迅速深入了解数据查询情况。
Springg就是个例子,荷兰的这家农业软件公司在与世界各地的农民合作。由于发展中国家缺乏基础设施,又认识到这些国家的农民需要与发达国家的农民那样同样可以访问农业信息,Springg想要找到一种方法,可以从田间获取宝贵数据,这些数据经评估后,可以将宝贵的信息迅速返回给较偏远地区的农民。
Talend公司专门提供Springg使用的大数据集成软件,首席营销官(CMO)阿什利·斯特拉普(Ashley Stirrup)说:“对于农民来说,采取土壤样本很重要,那样你就能更清楚地了解土地的特性,可以施什么类型的肥料,以便作物有最高产量。”
在以往,田地土壤样本在当地采取后,送到远在几百英里、乃至几千英里之外的实验室进行分析。
斯特拉普说:“Springg想要做的就是,在肯尼亚建立可以利用物联网技术的移动测试中心。”通过使用移动测试中心,Springg就能够借助传感器收集当地的土壤数据,然后在现场进行土壤分析,那样当地农民立即就能了解土壤情况以及最适合作物的肥料。土壤数据直接在田间加以收集和分析。然后发送到集中式数据库,可以在更综合、更全面的环境下进一步分析数据。
斯特拉普特别指出:“对于当地农民来说,这个过程极为高效,它将实验室分析土壤的速度加快了五倍。在欠发达地区,结果准确性和成本至关重要。这关系到一户家庭能否自给自足或者孩子能否上学。”
想把本地数据收集和分析之间的所有点联系起来,然后将数据发送到远地更庞大的数据资料库,这就需要形形色色的技术,从无线通信、移动电话,到可以处理不同国家电信环境的灵活的通讯协议,不一而足。斯特拉普说:“我们自己的数据工具应用于这种使用场合,我们想要一种解决方案可以处理任何类型的移动设备,并可以根据需要支持简单的通信协议。”
在当地的游击式田间应用程序(比如借助物联网传感器现场收集数据)中,还要确保数据准备和传输具有灵活性,那样可以捕获、分析、最终利用数据。
斯特拉普说:“有了这一种方法,你可以调入从世界各地的传感器收集而来的数据。然后,你可以在现场实时或近实时分析该数据,从数据立即获得当地结果。”
之后,数据从世界各地的多个收集点收集而来,然后发送到集中式数据资料库,数据可以改而用于众多用途。
斯特拉普说:“进一步利用这种农业数据的一种方法就是应用于金融市场。当一个系统能够分析并生成从世界各地的农业收集点收集而来的宝贵信息,许多公司就能更深入地了解当前的作物产量与历史趋势相比如何,天气状况对收成起到了怎样的影响,对大宗商品价格可能会有什么样的影响。”
使用这种“田间”的游击式数据收集和分析,立即将结果返回给当地农民,随后一路发送到大型数据资料库,然后数据进行进一步的分析,用于各大金融市场的趋势建模和决策,这种使用仍处于初期阶段,不过对于一种从宏观和微观两方面都可加以分析的数据模式而言,结果大有希望。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。