在当前这个时代,做互联网应用,使用微服务架构,几乎成为了一种时尚。它的模块解耦、灵活易扩展、高可用等特点,深受大家喜爱。然而不幸的是,这么多的模块,怎么上线啊……好不容易鼓捣上线啦,又一连串的坏消息啊,有木有……
好在,有用友iUAP云运维平台,它集成了对微服务架构的完美支持,先来张图看看吧。微服务其实也没想象的那么可怕,通过服务注册和自动服务发现,运维平台轻松搞定。开发和运维看看报表,就对跑在线上的微服务了如指掌,不再内牛满面……
那么,我们可以进一步扒一扒,用友iUAP云运维平台底层是如何实现微服务架构的。这得益于Docker镜像,环境统一了,不再有混乱状况出现。一个镜像对应一个微服务,容器运行起来,通过服务编排,自动集群就建立起来了,是不是很简单呢。
镜像构建的过程,就是这样啦,所有的微服务都存放在镜像仓库中,不断滚动的构建,创造出一个又一个新的版本,支持了迭代的快速推进。
什么,想了解到底长什么样?就是这个样子喽,不废话,直接上图,有图有真相,就是这么简单。应用的情况、服务实例的情况、内存和CPU的消耗量,尽收眼底,用数据来说话。
下次开发说应用需要加资源的时候,你就可以不用妥协啦,资源是否够用,数据说了算,运营成本节省下来了,线上服务运行状况提升了,可谓是皆大欢喜。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。