在当前这个时代,做互联网应用,使用微服务架构,几乎成为了一种时尚。它的模块解耦、灵活易扩展、高可用等特点,深受大家喜爱。然而不幸的是,这么多的模块,怎么上线啊……好不容易鼓捣上线啦,又一连串的坏消息啊,有木有……
好在,有用友iUAP云运维平台,它集成了对微服务架构的完美支持,先来张图看看吧。微服务其实也没想象的那么可怕,通过服务注册和自动服务发现,运维平台轻松搞定。开发和运维看看报表,就对跑在线上的微服务了如指掌,不再内牛满面……
那么,我们可以进一步扒一扒,用友iUAP云运维平台底层是如何实现微服务架构的。这得益于Docker镜像,环境统一了,不再有混乱状况出现。一个镜像对应一个微服务,容器运行起来,通过服务编排,自动集群就建立起来了,是不是很简单呢。
镜像构建的过程,就是这样啦,所有的微服务都存放在镜像仓库中,不断滚动的构建,创造出一个又一个新的版本,支持了迭代的快速推进。
什么,想了解到底长什么样?就是这个样子喽,不废话,直接上图,有图有真相,就是这么简单。应用的情况、服务实例的情况、内存和CPU的消耗量,尽收眼底,用数据来说话。
下次开发说应用需要加资源的时候,你就可以不用妥协啦,资源是否够用,数据说了算,运营成本节省下来了,线上服务运行状况提升了,可谓是皆大欢喜。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。