ZD至顶网CIO与应用频道 06月06日 北京消息:全球知名市场分析公司Forrester 的最新报告显示,全球领先的大数据分析服务供应商Teradata天睿公司(Teradata Corporation,纽交所:TDC) 被评为大数据 Hadoop 优化系统(Big Data Hadoop-Optimized Systems)的三大领导者之一。该报告为《Forrester浪潮™:2016 年第二季度大数据 Hadoop 优化系统报告》,由 Noel Yuhanna 和 Mike Gualtieri 撰写。报告称,Forrester 对七家厂商进行了评估,并评选出三大领导者(Leaders)和四大表现优异者(Strong Performers),他们均“拥有极具竞争力的解决方案,能够提供成熟的企业级 Hadoop 系统”。
厂商评选标准包括:1)全面的 Hadoop 优化系统产品;2)支持各种企业大数据用例的 Hadoop 优化系统;3)可供参考的客户群;4)促使 Forrester 关注厂商的客户咨询或重点技术;以及 5)具有公开发售的产品。
针对 Teradata,Forrester 写道:“Teradata 的第五代 Hadoop 一体机高效且完善。过去十年来,Teradata 是通过数据管理一体机获得显著成功的少数厂商之一。Teradata Appliance for Hadoop 整合了多种软件组件(开源及商用),包括最新版本的 Cloudera 或 Hortonworks的 Hadoop发行版、Teradata Connector for Hadoop 以及 Teradata Hadoop 命令行界面。Teradata 还通过其 Think Big 咨询业务提供解决方案咨询服务,帮助客户设计和创建整合的业务解决方案。”
Teradata Appliance for Hadoop 作为可立即运行的平台,经过预先配置和优化,能够通过 Teradata 软件运行企业级的大数据工作负载,从而简化 Hadoop 管理。
Teradata 最近公开发布的一段视频显示,全球最大的软件企业赛门铁克(Symantec)通过各种分析功能寻求新的创收机会,并提高客户的满意度。该公司发言人解释了他们如何利用其 Teradata 统一数据架构(Unified Data Architecture™)和 Hadoop 数据湖,将大量数据源(包括遥测数据)与“物联网”的数据整合,以掌握客户的产品使用情况和效果。最终,赛门铁克将客户维系率提高了 20%,并将顺利增收 2 亿美元。
Teradata天睿公司实验室总裁 Oliver Ratzesberger 表示:“Teradata 提供最成熟的企业级 Hadoop 工具以及高级专业服务,能够为企业提供最深入的Hadoop 应用整合。随着采用客户日益增多,以及更多扩展 Hadoop、数据湖和分析用例的项目,将促进大数据分析的快速发展。我们的客户对于我们的企业产品路线图和未来发展方向有着满腔的热情。在我们的大客户不断大力投资于 Teradata 及其 Hadoop 产品组合的同时,我们还致力于帮助新客户采用 Hadoop。”
2015 年的 Teradata Partners全球用户和合作伙伴大会上,在Hadoop 专题会议期间,指导委员会成员 Enterprise Holdings 公司的一名系统架构师,详细说明了他们通过 Teradata 数据库和 Teradata Appliance for Hadoop 开展数据整合的情况。Teradata Appliance for Hadoop 还包含 Presto,后者是新一代的开源 SQL 查询引擎,可在多种 Hadoop 发行版上运行。Presto 能够从 Hadoop 平台扩展出来,查询 Cassandra、关系数据库或专有数据库。这种跨平台的分析功能使得 Presto 用户能够从各种规模(从 GB 级到 PB 级)的数据湖中获取最大的业务价值。今年第三季度,Presto将会采用捆绑Hadoop 设备的方式上市。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。