ZD至顶网CIO与应用频道 06月03日 人物访谈(文/王聪彬):谈到大数据,就必然要谈到可视化分析,因为大数据分析的目的是发现有价值的信息,供决策者和业务人员使用,更好地做出企业的决策。
所以每次Teradata不论在国内还是国外的峰会上,都会设置一个大数据可视化展示区域。浏览这些抽象的图形,你甚至可能把它们看成是一副副艺术作品。
当天为我讲解的是Teradata天睿公司大中华区大数据事业部华东区高级顾问张玉瑞,他还有另外一个身份“数据科学家”,在他看来如何把信息传达给相应的人,这就需要一种深入浅出、图文并茂的形式,一张图甚至可以胜过千言万语。
Teradata天睿公司大中华区大数据事业部华东区高级顾问张玉瑞
在这些范例图形中,当然并不能单纯停留在好看的层面,大数据可视化的目的是需要反映出真实的情况,让用户及时注意并防范这些问题以及更好的进行营销。所以这些抽象的图像在真正的系统中可以实现缩放,每一个点都可以看到是哪个客户,以及客户的一些信息,如行业、规模、地区、存款等,线条上也可以看到具体的交易金额。
资金喷泉
“资金喷泉”展示了不同公司之间的资金流动关系,是一个可以清晰发现客户层级的资金视图,图中所展示的是中国一家大型银行的企业银行业务其中一个分析项目,使用转账交易数据了解风险和发现市场机会。
市场营销人员可以利用它切入核心企业,了解上下游关联关系,开展供应链金融。在纷繁复杂的交易过程中,寻找合适的营销目标,捕捉适当的营销时机;风险人员则可以根据它识别客户异常资金交易,防范风险,通盘考虑相关参与方,而不是单单交易对手一方。
图中每一个点代表公司,线代表两家公司之间的资金转移,箭头代表资金的流向。张玉瑞对两个方向进行了描述,在营销和供应链角度,需要从图中找到核心企业,再延伸到上下游;在风险角度,一方面衡量市场变化,一方面监控资金流向。
谈到“资金喷泉”的形成,因为每家公司每天资金流量都是非常大,怎么删繁就简,把一些比较主要的问题呈现出来,需要经过大量的计算后提炼出一些比较有价值数据。如果把几百万个客户都展现在一张图中,解读起来也很困难,因此需要分门别类,这里就需要通过一些业务和分析进行提炼。
担保圈焰火
汽车信贷业务的超常规发展确实为银行带来了利润,但在分享车贷“蛋糕”喜悦的同时,不断攀升的车贷违约率也向银行业敲响了警钟,因为越来越多的车贷存在一些不易规避的风险。“担保圈焰火”展现了在某家银行的汽车厂商、4S店和个人客户之间建立的担保关系网络。
图中点代表车贷客户或者车贷担保人,线代表担保人和被担保人的担保关系,不同颜色用来区分相应的担保网络。
图中比较明显的是黄色、蓝色、紫色三个群体,黄色群体比较正常,中心是4S店,周围是一对一的个人客户。而左下角的蓝色和紫色群体存在重叠,也就是有些客户在两家以上的公司申请汽车贷款,存在一定的骗贷可能,需要银行高度关注。
这里只是使用银行的数据进行图形显示,并没有使用汽车公司的数据。张玉瑞指出,以往的分析都是单独看每笔贷款,其实贷款之间并不是独立的,现在我们把他们关联起来,就很容易发现之前很难发现的问题。
担保圈之谜
挥别了黄金时代的房地产行业,未来房地产价格将在不同地区出现分化。目前一、二线城市住宅地产需求旺盛,价格坚挺,三、四线城市市场低迷,部分区域价格下滑,销售不畅。为了促进销售,部分开发商或者房产中介为购房者提供担保,降低购房门槛,低首付甚至零首付,一旦房价出现大幅波动,这些房贷将给银行带来巨大的风险。
“担保圈之谜”揭示了房地产开发行业所产生的潜在风险,每一个辐射源是房地产公司,散开的点是个人客户。不同颜色可以区分不同担保网络。你会看到一些房地产开发商为大量的客户提供贷款的担保。
“最近央行和银监局要求银行降低首付贷,说明政府对房贷的加杠杆高度关注。”张玉瑞说道。房贷本来是银行优质的资产,如果购房者或者炒房者变成一两成首付或者零首付,杠杆就会陡增,风险就会放大。
所以通过担保圈之谜,让银行展现和监控风险暴露的规模和真实的特性。银行可以对高风险客户采取措施,这些措施包含收紧贷款审批,甚至拒绝贷款。
Teradata Aster如何做可视化分析
“资金喷泉”是使用Teradata Aster和Aster的Lens。装载的交易数据是非常大,涵盖超过 670,000 公司的 60,802,990 记录。公司记录包含行业分类代码,因此我们可以理解他们的业务活动。
“担保圈焰火”和“担保圈之谜”展示了在Teradata Aster分析探索平台做的Sigma图形,所用的数据源包含担保人企业ID、担保合同信息、担保金额、企业信用评级等。这里用的分析方法是社交媒体分析,以发现有影响力的客户和识别担保模式。
其实整个社交圈非常复杂,传统的分析需要采样,但像资金链、担保圈、社交群就没办法抽样。张玉瑞解释道,因为网络大庞大,抽样会使一些关系切断,所以需要将所有数据一起进行分析。
因为所有数据的分析,数据的体量非常庞大,举一个通俗易懂的例子,Google搜索资料会把相关性高得内容显示在前面,这中间会通过一些数据进行计算,算出一个PageRank值,越好的会排到越前面以达到更准确,而且计算速度非常快。Teradata Aster图分析(社交媒体分析)算法里就有PageRank算法,我们通过它来找出网络中有重要影响力的客户 。
不只是以上三个可视化图形,还有很多大数据可视化都是用Teradata Aster来实现。Aster数据库预装了200+个SQL-MR函数,快速高效地支撑库内的数据挖掘和大数据探索分析,它包括了路径与模式分析(Path/Pattern Analysis)、图分析(Graph Analysis)、文本分析(Text Analysis)、统计分析(Statistical calculations)、数据转换(Transformation)、关联及关系分析(Relational Analysis)等。
张玉瑞同时也还原了整个可视化分析的过程,数据来自不同的数据源,把它们加载到分析工具中,可能会有一些数据质量的问题,所以还需要进行清洗。之后建模是一个重要的工作,最后是分析,如果企业数据基础较好,准备的时间也会较短,分析质量也会很高。
好文章,需要你的鼓励
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。
这项由中国人民大学高瓴人工智能学院研究团队发表的研究解决了大语言模型评判中的自我偏好问题。研究提出了DBG分数,通过比较模型给自身回答的分数与黄金判断的差异来测量偏好度,有效分离了回答质量与自我偏好偏差。实验发现,预训练和后训练模型都存在自我偏好,但大模型比小模型偏好度更低;调整回答风格和使用相同数据训练不同模型可减轻偏好。研究还从注意力分析角度揭示了自我偏好的潜在机制,为提高AI评判客观性提供了重要指导。
这篇研究提出了DenseDPO,一种改进视频生成模型的新方法,通过三大创新解决了传统方法中的"静态偏好"问题:使用结构相似的视频对进行比较,采集细粒度的时序偏好标注,并利用现有视觉语言模型自动标注。实验表明,DenseDPO不仅保留了视频的动态性,还在视觉质量方面与传统方法相当,同时大大提高了数据效率。这项技术有望推动AI生成更加自然、动态的视频内容。