ZD至顶网CIO与应用频道 05月31日 人物访谈(文/王聪彬):这是我第二次见Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr,他一上来就迫不及待地和我分享了最近发生在他女儿身上的一件趣事。作为社交达人的女儿活跃在各大社交网站,有一天她看到Facebook的财报,不禁产生疑问,为什么提供免费服务还可以赚钱?
Mikael为女儿解释了Facebook是如何利用用户数据赚钱,女儿马上意识到未来在社交网站上上传数据需要更谨慎。这正是消费者越来越意识到数据的价值,这对于企业利用数据将是一个挑战。
Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr
当然数据也可以帮助企业从新定义商业模式,在Teradata Universe峰会德国站,Mikael遇到的一个德国客户谈到,十年以后各个企业的CEO不能再找借口说我不知道这件事情发生了,因为数据可以将现实重现。
市场转型带来的技术与业务突破
在2013年,Teradata将市场分为美洲和国际两大部分,Mikael 负责市场营销及国际市场营销和业务拓展。在他看来虽然在三四年之前美国市场有一定的疲软,但2015年国际业务的各个市场都表现良好,尤其是中国市场增长明显。
Teradata去年财报出现了降幅,这也反映出传统数据仓库市场需求出现变化,数据分析相关需求却正在逐渐增加。Teradata同时也收购了多家公司来扩充技术实力,结合开源技术来提供更多更强大的数据分析服务,来应对市场的转型。
Mikael强调说,他们看重长期的发展,Teradata最重要的行业是金融、电信、零售三个行业,其中电信行业在过去一段时间基本已经达到饱和,但零售业由于中国地理分布的原因,在中国还有很多可以拓展的地方。
在三大行业之外,Teradata同样也在做一些新的拓展,尤其是新的增长领域,这其中很多是B2C的企业,因为他们会产生大量丰富的数据。另外,“中国制造2025”战略强调制造业的数字化转型,之前制造业客户更多是在营销和财务系统上进行投资,而现在核心生产系统的数据分析需求正是Teradata拓展的新领域。
在技术上Teradata也在改变策略,强调包容不同技术的分析生态系统,来帮助客户解决问题。同时,在技术上也会坚持创新,实现业务模式的不断突破。
数据将重新定义企业
现如今各行各业对于数据分析的理解都已经发生了改变,这也使得技术层面和业务层面都出现了一定挑战,大家都希望更好的利用数据,将数据进行变现,因为数据带来的市场机遇是巨大的。
以银行为例,五年前他们做的还是关系型数据库或者列式数据库,当数据不断的累积后,他们在想利用这些数据能解决什么业务问题?银行客户们总结了200多个可以用数据解决的新业务问题,这其中涉及了移动数据、网络数据、甚至各种各样交互产生的数据,并且查阅这些数据进行分析的人也在发生变化。
数据在电信行业也有三个趋势,第一,全渠道地整合线上线下信息,在销售前对客户有一个全面的了解;第二,根据客户相关数据来制定促销价格,因为定价将直接影响他们的损益;第三,通过数据了解供应链,客户在什么时间什么地点需要什么货品,帮助零售商控制成本。
有一个制造业客户曾向Mikael抱怨,流水线组装工人投诉没有时间上卫生间,但管理层却说不存在这个问题。最后他们通过给每个流水线上的工人配发一个智能穿戴设备(Fitbit)来收集工人信息解决投诉问题。
通过这些数据,他们还能发现流水线上工人的整个工作流程设计是否合理。例如,他们发现重型工业组装操作需要单手举起非常重的部件,然后又要弯下腰拿工具进行操作,所以这里就需要进行工作流程再造,而这都说明数据能更快速地帮助他们解决了多种问题。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。