创建云上的数据恢复计划,很重要的一点是持续跟踪基础架构,DR需求和可能的故障转移持续时间。
公有云给IT部门提供了绝佳的机会来实现业务的持续性/灾难恢复计划,而无需花费巨资构建独享的数据中心。有了云数据恢复系统之后,云就可以用作基本数据的存储库或者甚至当主要系统出问题时运行应用之处。
当构建DR计划时,第一步是查看用来交付IT服务的应用,并且决定灾难发生时需要保护什么。这意味着创建需要运行的应用和服务的清单。很多企业已经转向虚拟化作为其核心服务器的部署模型;但是,仍然需要考虑物理服务器。完善的云数据恢复计划应该包括如下:
用来交付基础架构的物理和虚拟服务器。这些包括活动目录(AD)服务器,DNS/DNCP服务器和应用。
最好提前确定基础架构服务器,因为当灾难发生时这些系统需要第一时间恢复服务。可以预配置在云上运行的AD、DNS和DNCP服务,并且和它们的内部实例同步,让DR流程更加容易,也能够更快实现。
要想让云上的DR能够成功工作,理解网络配置至关重要。这意味着需要花时间理解网络层的应用之间的相互依赖关系,包括安全和防火墙配置。云数据恢复相关的问题有:
确定云数据恢复需求
假定在灾难事件发生时,每个应用都需要立即恢复,这并不太实际。相反,应该基于一系列条件来区分应用的优先级,来决定需要多快,以及哪些同步系统和数据需要恢复运营。在决定恢复应用的服务等级时,可以使用一些标准来进行度量:
建立正确的云数据恢复需求包括和应用程序的业务所有者沟通,因为他们了解其应用的重要程度。从经验上看,业务所有者会认为其所有应用都很重要——直到他们了解恢复所需的费用为止。因此可以告诉他们不同方案的费用评估。
服务级别的最后一点是:一些严格的需求,比如零PRO,基于云的DR是无法达成的,因为本地和云位置之间会有延时。需要将这些应用排除在基于云的DR之外,并且提供更多定制的DR产品。
DR服务会运行多久?
最后需要讨论的是,服务会在公有云上运行多久。做这样的决策依赖于发生的事件类型。并非所有灾难都会导致所有在线功能的崩溃。还会存在一些边缘事件类型,比如:
有时候,服务需要移动几个小时或者几天。当整个站点都丢失时,需求可能是运行DR服务几周或者几个月,直到重建了之前的设备。云恢复服务会为所使用的活动服务计费,因此在选择DR服务时这是很重要的考核点。
好文章,需要你的鼓励
AI改变的远不止一间课堂,而是学生的学习方式、未来的职场场景和社会对工作者能力的要求,整个商业文明中的每一位参与者,都将被推着一起改变。
这项研究开发了CaptionQA系统,通过测试AI生成的图片描述能否支持实际任务来评估其真正价值。研究发现即使最先进的AI模型在图片描述实用性方面也存在显著不足,描述质量比直接看图时下降9%-40%。研究涵盖自然、文档、电商、机器人四个领域,为AI技术的实用性评估提供了新标准。
随着大语言模型的不断涌现,Z世代正成为与AI技术共同成长的新一代商业领袖。他们在数字环境中表现出更强的自信,善于协作而非单纯竞争。斯坦福创新者穆拉冈提出AI发展的三种情景:全面禁止、野蛮生长或人机内容分流共存。Z世代企业家需要掌握平台所有权、利用AI扩大规模、打造独特品类和实现超个性化等四大要素,以道德和有益的方式驾驭AI技术。
以色列理工学院研究团队提出了一种将专家混合模型融入YOLOv9目标检测的创新方法。该方法让多个专门化的YOLOv9-T专家分工协作,通过智能路由器动态选择最适合的专家处理不同类型图像。实验显示,在COCO数据集上平均精度提升超过10%,在VisDrone数据集上提升近30%,证明了"分工合作"比单一模型更有效,为AI视觉系统提供了新思路。