创建云上的数据恢复计划,很重要的一点是持续跟踪基础架构,DR需求和可能的故障转移持续时间。
公有云给IT部门提供了绝佳的机会来实现业务的持续性/灾难恢复计划,而无需花费巨资构建独享的数据中心。有了云数据恢复系统之后,云就可以用作基本数据的存储库或者甚至当主要系统出问题时运行应用之处。
当构建DR计划时,第一步是查看用来交付IT服务的应用,并且决定灾难发生时需要保护什么。这意味着创建需要运行的应用和服务的清单。很多企业已经转向虚拟化作为其核心服务器的部署模型;但是,仍然需要考虑物理服务器。完善的云数据恢复计划应该包括如下:
用来交付基础架构的物理和虚拟服务器。这些包括活动目录(AD)服务器,DNS/DNCP服务器和应用。
最好提前确定基础架构服务器,因为当灾难发生时这些系统需要第一时间恢复服务。可以预配置在云上运行的AD、DNS和DNCP服务,并且和它们的内部实例同步,让DR流程更加容易,也能够更快实现。
要想让云上的DR能够成功工作,理解网络配置至关重要。这意味着需要花时间理解网络层的应用之间的相互依赖关系,包括安全和防火墙配置。云数据恢复相关的问题有:
确定云数据恢复需求
假定在灾难事件发生时,每个应用都需要立即恢复,这并不太实际。相反,应该基于一系列条件来区分应用的优先级,来决定需要多快,以及哪些同步系统和数据需要恢复运营。在决定恢复应用的服务等级时,可以使用一些标准来进行度量:
建立正确的云数据恢复需求包括和应用程序的业务所有者沟通,因为他们了解其应用的重要程度。从经验上看,业务所有者会认为其所有应用都很重要——直到他们了解恢复所需的费用为止。因此可以告诉他们不同方案的费用评估。
服务级别的最后一点是:一些严格的需求,比如零PRO,基于云的DR是无法达成的,因为本地和云位置之间会有延时。需要将这些应用排除在基于云的DR之外,并且提供更多定制的DR产品。
DR服务会运行多久?
最后需要讨论的是,服务会在公有云上运行多久。做这样的决策依赖于发生的事件类型。并非所有灾难都会导致所有在线功能的崩溃。还会存在一些边缘事件类型,比如:
有时候,服务需要移动几个小时或者几天。当整个站点都丢失时,需求可能是运行DR服务几周或者几个月,直到重建了之前的设备。云恢复服务会为所使用的活动服务计费,因此在选择DR服务时这是很重要的考核点。
好文章,需要你的鼓励
这项由加州大学圣地亚哥分校和微软研究院合作开发的REAL框架,通过程序分析反馈训练大型语言模型生成高质量代码。与传统方法不同,REAL采用强化学习将代码安全性和可维护性作为奖励信号,不依赖人工标注或特定规则。研究在多个数据集上的实验表明,REAL在保证功能正确性的同时显著提高了代码质量,有效解决了"即兴编程"中的安全漏洞和维护性问题,为AI辅助编程提供了新的范式。
加州大学伯克利分校与Meta FAIR研究团队开发了"Self-Challenging"框架,让大语言模型通过自己创建和解决任务来提升能力。该方法引入创新的"Code-as-Task"格式,包含指令、验证函数、示例解决方案和失败案例,确保生成的任务既可行又有挑战性。在工具计算、网页浏览、零售服务和航班预订四种环境测试中,仅使用自生成训练数据,Llama-3.1-8B模型性能提升了两倍多,证明AI可以通过自我挑战实现有效学习,减少对人类标注的依赖。
南洋理工大学与SenseTime Research合作提出了PoseFuse3D-KI,一种创新的人体中心关键帧插值框架。该方法将3D人体模型信息融入扩散过程,解决了现有技术在处理复杂人体动作时产生扭曲结果的问题。研究团队开发了专门的SMPL-X编码器直接从3D空间提取几何信息,并设计了融合网络将3D线索与2D姿态无缝整合。他们还构建了CHKI-Video数据集,包含2,614个视频片段及完整的人体标注。实验结果显示,PoseFuse3D-KI在PSNR上提升9%,LPIPS减少38%,显著超越现有方法。
这项研究提出了LongGuide算法,解决了大型语言模型在长文本生成任务中的局限性。研究团队发现,仅依靠上下文学习无法使模型充分掌握文本的语言和格式特性。LongGuide通过自动生成两种指导原则:度量指导原则和输出约束指导原则,显著提升了模型性能。在七种长文本生成任务中,该方法使开源和闭源模型的ROUGE-L评分平均提高约6%。LongGuide具有通用性强、易于学习、成本效益高等优点,为提升AI长文本生成能力提供了新方向。