2015年,混合云技术不断上长,因为混合云的灵活性、数据的快速恢复性以及可确保特定数据的安全性,越来越多的企业选择部署这一模型。
“从需求的角度看,它是专门为我们发布的,” Seagate Technology的项目产品经理Simon Wheeler说。“随着我们企业不断发展,对混合的需求也越来越高。我们客户需要那些部署灵活,依业务案例而定的方式。恢复的时机对企业来说很关键。数 据恢复具有不同的经济学意义,无论是在本地还是在云端进行。”
混合云技术的增长显现于新兴厂商和厂商的收购之中。IBM收购Cleversafe来支撑其混合云技术。Cleversafe是较早期的存储厂商,IBM将Cleversafe的技术打包进BIM的云业务单元中。
存储厂商NetApp推出了Data Fabric Solutions Essentials方案,它绑定了一些小工具,可帮助客户实现混合云存储,通过使用NetApp存储硬件和它的Cloud Ontap软件。该公司于2014年发布了Cloud Data Fabric,来合理化本地与云存储之间的数据管理。
EMC从其它存储组合中抽取了资源,VMware和其它公司在EMC的保护伞之下,加强了 Federation Enterprise Hybrid Cloud解决方案。EMC目标定位于大型混合云客户,如北德克萨斯大学;医疗分析公司Inovalon;未来能源控股公司达拉斯,和加拿大医疗服务提供 商eHealth Saskatchewan。
初创企业Rubrik推出了Rubrik r300系列混合云设备,与其同一时间该公司发布了旗舰Converged Data Management平台。网络附加存储加速供应商Avere Systems,与三大公共云供应商建立了战略合作,这三大厂商分别是亚马逊AWS、谷歌云计算和微软Azure,共同发布了AvereVirtual FXT、 CloudFusion和FlashCloud软件。
Avere Systems市场副总裁Rebecca Thompson说,该公司新营收销售渠道在从年前的100%本地营收降到了60%由混合云技术产生。
“许多企业已经大量地投资于基础设施,”她说。“他们想一直使用,直到不能用为止。他们既不想使用公有云存储也不想用其进行计算。”
Storage Switzerland总裁George Crump说,使用混合云技术还要根据公司规模来看。通常,小型企业只胡20TB数据还是使用公有云,但当数据量达到 25TB到50TB之间时,公有云成本模型就成问题了。
“云中存储数据打破了成本模型,”他说。Crump认为混合云的增长,是因为客户意识到了如何更好的利用云。
“我相信常识最后一定会被理解,”他说。“人们最终将会知识它是一种工具。是一种很好的工具,但它不仅只是工具。”
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。