ZD至顶网CIO与应用频道 01月18日 北京消息(文/王聪彬):移动互联网出现之后,海量的用户行为数据产生了巨大的价值。从2012年至2015年,大数据一直处于1.0时代,主要应用为大数据的采集、存储、处理、挖掘、分析等,停留在数据效率问题上。2015年之后,大数据进入以获取价值为主的2.0时代,即实现大数据变现的价值时代。
银行业是个高度信息化的行业,从核心的银行系统到ATM取款机,从信用卡到网银系统,银行在每个环节都高度依赖信息系统和数据。现在,如何把数据变现是所有银行最为关心的话题之一。
Teradata天睿公司大中华区金融行业行业咨询主管余俊越
银行业大数据变现的关键
大数据变现主要是通过企业内部和外部两部分数据同时作用,在内部有业务交易数据、流程型数据、交互式数据等可以形成变现资产,外部则是行业数据和互联网等数据。
首先,银行业目前已经在内部数据的分析、应用层面较为成熟。而在大数据2.0时代,银行业有望实现内外部数据的结合,获取数据变现价值。例如,在反欺诈应用方面,银行可结合自身的传统风险模型,拓展外部征信范围,借用工商数据、行业数据、网络关系模型,甚至关联运营商数据、垂直电商数据等,对个人、小微及中小企业客户进行整合信用评级,以过滤欺诈及坏帐风险。同时,大数据实时分析客户信用卡交易数据、网络位置行为和商户交易历史等可以防止客户与商户的套现欺诈,实现动态预警及追踪。
第二,银行业若想在大数据变现时代取得领先,移动大数据将是关键中的关键。除了将自身银行移动App中的交互行为进行收集和处理外,银行必须向互联网企业学习,打破自身的数据闭环,坚持信息共享,寻找有价值的外部数据,进行跨界合作。也就是说,在大数据价值变现时代,移动互联网数据将成为银行业大数据应用的基础数据。移动大数据包括用户位置信息、个人喜好、生活轨迹和社交媒体上的情绪意见表达等等,全都具有银行业传统数据不具备的特点——持续、多变与实时,其潜在价值相当可观。
第三,深入的客户洞察是掌控客户的关键,因此客户标签也将成为大数据金融的关键工具。简单来说,客户标签就是对客户行为洞察后建立的客户特征,通过整理客户现有的行为和知识,形成完善的结构化客户知识标签,从而全面立体地认知客户。标签具有相关性和大概率特点,可从基本属性特点和需求分析方面来定义,可分为用户属性、产品信息、应用交易、交互历史、消费偏好等类型,从而定义出银行业需要的客户群体信息,是用户画像、精准营销、风险监测、决策支持、战略定位等高级应用的基础,是大数据变现时代的基本元素。
例如,某大型国际银行将大数据分析技术应用于精准营销,并取得了不错的成果。每天都有成千上万的客户通过访问银行网站、移动App寻找信息或办理业务,但当一部分客户中断了申请流程或未能得到帮助时,如何提高营销成功率及提高客户体验就成为了大数据变现时代的重点。该银行通过大数据平台,收集客户的行动和搜索数据点,形成数据标签,当客户访问银行网页或走进银行的某一分支机构时,大数据平台就可以实时分析、洞察客户之前的行动标签,包括线上搜索信息、手机银行的查询动作等,为客户推荐相关产品及信息,从而实现精准营销,获取大数据变现价值。
大数据技术还在不断地完善,随着新技术的不断提出,大数据平台的可靠性、性能也将随之提升,将帮助银行业顺利迎接大数据2.0时代。而随着数据变现模式的深入探索,可期待在未来创造出更多不同的商业模式,带来更具竞争能力的领导优势!
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。