ZD至顶网CIO与应用频道 01月18日 北京消息(文/王聪彬):移动互联网出现之后,海量的用户行为数据产生了巨大的价值。从2012年至2015年,大数据一直处于1.0时代,主要应用为大数据的采集、存储、处理、挖掘、分析等,停留在数据效率问题上。2015年之后,大数据进入以获取价值为主的2.0时代,即实现大数据变现的价值时代。
银行业是个高度信息化的行业,从核心的银行系统到ATM取款机,从信用卡到网银系统,银行在每个环节都高度依赖信息系统和数据。现在,如何把数据变现是所有银行最为关心的话题之一。
Teradata天睿公司大中华区金融行业行业咨询主管余俊越
银行业大数据变现的关键
大数据变现主要是通过企业内部和外部两部分数据同时作用,在内部有业务交易数据、流程型数据、交互式数据等可以形成变现资产,外部则是行业数据和互联网等数据。
首先,银行业目前已经在内部数据的分析、应用层面较为成熟。而在大数据2.0时代,银行业有望实现内外部数据的结合,获取数据变现价值。例如,在反欺诈应用方面,银行可结合自身的传统风险模型,拓展外部征信范围,借用工商数据、行业数据、网络关系模型,甚至关联运营商数据、垂直电商数据等,对个人、小微及中小企业客户进行整合信用评级,以过滤欺诈及坏帐风险。同时,大数据实时分析客户信用卡交易数据、网络位置行为和商户交易历史等可以防止客户与商户的套现欺诈,实现动态预警及追踪。
第二,银行业若想在大数据变现时代取得领先,移动大数据将是关键中的关键。除了将自身银行移动App中的交互行为进行收集和处理外,银行必须向互联网企业学习,打破自身的数据闭环,坚持信息共享,寻找有价值的外部数据,进行跨界合作。也就是说,在大数据价值变现时代,移动互联网数据将成为银行业大数据应用的基础数据。移动大数据包括用户位置信息、个人喜好、生活轨迹和社交媒体上的情绪意见表达等等,全都具有银行业传统数据不具备的特点——持续、多变与实时,其潜在价值相当可观。
第三,深入的客户洞察是掌控客户的关键,因此客户标签也将成为大数据金融的关键工具。简单来说,客户标签就是对客户行为洞察后建立的客户特征,通过整理客户现有的行为和知识,形成完善的结构化客户知识标签,从而全面立体地认知客户。标签具有相关性和大概率特点,可从基本属性特点和需求分析方面来定义,可分为用户属性、产品信息、应用交易、交互历史、消费偏好等类型,从而定义出银行业需要的客户群体信息,是用户画像、精准营销、风险监测、决策支持、战略定位等高级应用的基础,是大数据变现时代的基本元素。
例如,某大型国际银行将大数据分析技术应用于精准营销,并取得了不错的成果。每天都有成千上万的客户通过访问银行网站、移动App寻找信息或办理业务,但当一部分客户中断了申请流程或未能得到帮助时,如何提高营销成功率及提高客户体验就成为了大数据变现时代的重点。该银行通过大数据平台,收集客户的行动和搜索数据点,形成数据标签,当客户访问银行网页或走进银行的某一分支机构时,大数据平台就可以实时分析、洞察客户之前的行动标签,包括线上搜索信息、手机银行的查询动作等,为客户推荐相关产品及信息,从而实现精准营销,获取大数据变现价值。
大数据技术还在不断地完善,随着新技术的不断提出,大数据平台的可靠性、性能也将随之提升,将帮助银行业顺利迎接大数据2.0时代。而随着数据变现模式的深入探索,可期待在未来创造出更多不同的商业模式,带来更具竞争能力的领导优势!
好文章,需要你的鼓励
AWS在纽约峰会上发布Amazon Bedrock AgentCore,这是一个企业级AI代理构建、部署和运营平台。该平台支持开源框架如CrewAI、LangChain等,提供运行时、内存、身份管理、可观测性等核心服务。Box、巴西伊塔乌银行等企业已开始使用该平台构建生产级应用。平台采用按需付费模式,目前在部分AWS区域提供预览版,2025年9月16日前免费试用。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
网约车巨头Uber宣布与中国科技公司百度达成多年战略合作,计划在美国和中国以外地区推出数千辆自动驾驶出租车。服务将从今年晚些时候开始,首先在亚洲和中东的未指定国家推出。百度的Apollo自动驾驶汽车已在中国11个城市运营,成本仅为3.7万美元,远低于行业平均的20万美元。用户可选择乘坐自动驾驶车辆或人工驾驶车辆。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。