NVIDIA 在人工智能 (AI) 数据中心领域继续保持主导地位,其最新季度业绩显示收入增长 16%,较去年同期增长 93%。
公司数据中心业务季度收入达到 356 亿美元,全年收入达到 1,150 亿美元,较去年增长 142%。
NVIDIA CEO 兼创始人黄仁勋在准备好的讲话中表示:"Blackwell 的需求非常强劲,因为推理 AI 增加了另一个扩展定律 - 增加训练计算量可以让模型更智能,增加长期思考的计算量可以让答案更智能。"
"我们已成功实现了 Blackwell AI 超级计算机的大规模生产,在第一季度就实现了数十亿美元的销售额。AI 正在以光速发展,主动 AI 和物理 AI 为下一波 AI 革命奠定了基础,这将彻底改变最大的行业。"
在财报电话会议上,金融分析师就 DeepSeek (该模型需要较低算力的 GPU) 以及微软等云服务提供商 (CSP) 正在设计自己的 AI 优化芯片等问题向 NVIDIA 提出质疑。
根据 Seeking Alpha 发布的电话会议记录,CSP 约占 NVIDIA 业务的一半。但企业客户的需求也在增长。黄仁勋表示:"我们看到企业业务未来会增长",他认为这代表了长期销售 NVIDIA GPU 的更大机会。
黄仁勋利用财报电话会议讨论了为什么他认为新的 AI 模型会推动需求增长,即使 AI 模型在计算效率方面变得更高。他说:"模型思考得越多,答案就越智能。OpenAI、Grok-3 和 DeepSeek-R1 等模型都是应用推理时间扩展的推理模型。推理模型可能消耗 100 倍的计算量。未来的推理模型可能消耗更多计算量。"
当被问及 CSP 开发专用集成电路 (ASIC) 而不使用 GPU 的风险时,黄仁勋通过讨论技术栈的复杂性作出回应,暗示如果使用定制芯片而不是标准 GPU,这将是一个挑战。他说:"软件栈非常困难。制造 ASIC 与我们的工作没有区别 - 我们构建新架构。"
据黄仁勋称,建立在 NVIDIA 架构之上的技术生态系统比两年前复杂 10 倍。他说:"这很明显,因为世界在架构之上构建的软件数量正在呈指数级增长,AI 发展非常快。因此,在多个芯片之上整合整个生态系统是很困难的。"
在讨论 NVIDIA 的业绩时,Forrester 高级分析师 Alvin Nguyen 表示:"尽管这一成就令人震惊,但 NVIDIA 再次创下记录似乎已成为常态。创纪录的收益表明对 NVIDIA AI 产品的需求持续存在。强调推理模型驱动更多而不是更少的计算,这是对 DeepSeek 影响其需求担忧的一个很好的口头反驳。"
然而,在 Nguyen 看来,黄仁勋对替代 NVIDIA GPU 的定制芯片问题的回应是"轻描淡写的"。
他说:"对于亚马逊、微软和谷歌的定制芯片威胁其业务的问题,他们的回应是轻描淡写的,忽视了这些公司需要 NVIDIA 之外的选择,以及需要专门针对其 AI 训练和推理需求定制的半导体。"
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。