案例基本内容和执行情况
在竞争激烈的证券市场,提升内部运营管理水平,降低客户服务成本,实现智能化和数字化运营已成为证券企业的基本要求。采用RPA方式的非侵入性改造可以大大提升工作效率,从而优化证券企业的运营管理水平,降低客户服务成本,实现智能化和数字化运营。
西部证券数字员工取名为小Q君,小Q君中“君”源自集团君子文化“博闻强识而让,敦善行而不怠,谓之君子”。“Q”表示特点:“quick(敏捷的)、quality(优质的)、 quantity(批量的)、qualified(有效的)、quest(探索性)”。小Q君作为西部证券数字员工虚拟形象,担任西部证券数字化转型的排头兵。
西部证券数字员工平台多个创新亮点
1、RPA+AI+数据中台技术相辅相成
RPA、Al、数据中台各司其职又相辅相成,共同推动西部证券数字化转型发展。数据中台作为连接前后台系统的中间层,对前台业务的敏捷性形成强力支撑。Al处理非结构化数据,通过OCR、NLP等功能模块,让复杂业务简单化。RPA在不侵入原有系统的同时,完成企业自动化的最后“一公里”。同时,RPA可以作为接口打通底层数据,进行跨系统数据整合,且本身具备中台和低代码属性,数据中台在执行过程中需要调用大量数据,又可以通过低代码完成引擎的搭建,三者功能相互补充共同助力企业数字化转型。
2、模式创新:RPA as a service,微服务赋能业务敏捷进化
通过服务化能力,将编排沉淀的自动化任务以标准API对外提供服务,结合现有BPM平台将数字员工能力以业务服务方式提供给业务用户使用,结合现有业务系统需求场景提供数字员工服务接入,实现数字员工的业务服务化并支撑全流程的自动化。
3、开发创新:非侵入式灵活部署,旨在实现业务流程自动化
RPA相对于传统代替人类手工劳动的机器人,主要用于在信息系统的自动化操作,具备自动执行预定流程和跨系统协同的能力。而与ERP、OA等特定应用场景软件比较,RPA普适性更强,可以跨部门、跨行业进行部署。且RPA是非侵入式软件,无需改变现有系统即可完成部署,灵活性强,交付周期短,同时可以避开传统系统问题,帮助西部快速迭代转型,实现业务流程自动化。
深挖高价值场景,提升客户体验,减少业务风险
西部证券打造数字员工平台,对已上线的数字员工流程进行统一管控。数字员工平台展示西部证券上线的数字员工流程,从运行时长、运行次数、流程数量、FTE等方向对数字员工流程进行描述。数字员工平台支持一站式运维,通过可视化运营大屏,对当日运行流程进行实时监控,反馈流程运行情况,支持人工介入处理异常流程。
案例主要经济成效和社会成效分析
数字员工已为我司财富管理部、计划财务部、投行业务条线、网络金融部等多部门提供自动化流程机器人,大幅提升了业务处理速度,将业务处理差错率降低为0,释放员工低端数据操作,让员工更加专注于高价值的工作。数字员工与证券业务深度结合,深挖高价值场景,提升客户体验,减少业务风险。
截至2022年底,数字员工项目累计上线49条流程,覆盖9个业务部门,机器人总运行时长2974小时,约节省375人天工时,多数流程运行成功率保持在80%以上,日常流程运行稳定。串联29个系统,解决部分数据孤岛问题。RPA结合Al、数据中台将能力以组合拳方式在风险合规管控、提升客户体验、基层减负增效、助力拓客营销上赋能业务。
西部证券通过举办数字员工创新大赛,唤醒员工数字化意识,激发创新潜能,推动数字科技成为我司发展新动力。
西部证券数字化转型办公室的“智能合同审查”项目在“第二届中国RPA+AI开发者大赛”中荣获金奖。“智能合同审查”项目借助RPA、Al及管理平台等技术,打通西部内部系统上下游,实现合同审核自动化,合同数据可视化、可量化、可追溯,提高业务合同审核效率。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。