ChatGPT仅推出2个月,月活跃用户就已达1亿,半年时间ChatGPT就成为了生成式AI的现象级产品。
在生成式AI的发展中,算力的存在可以说举足轻重。可以看到大模型正在带动AI算力需求超越摩尔定律增长,据统计AI训练任务中的算力增长,每 3.5个月就会翻一倍。
以GhatGPT为例,在预训练算力上,训练一次1,746亿参数的GPT-3模型需要的算力约为 3,640 PFlop/s-day,对应的单次训练成本高达460万美元;日常运营算力上,GhatGPT根据访问量与内容量测算,单月运营算力约4,800PFlop/s-day;调优迭代算力上,每月模型调优带来的算力需求为82.5~137.5 PFlop/s-day。
现阶段,算力作为数字经济时代新的生产力,已成为经济社会高质量发展的重要支撑。工业和信息化部数据显示,我国近年来算力产业年增长率近30%,算力总规模位居全球第二。截至2022年底,我国算力总规模达到180EFLOPS(每秒18000京次浮点运算),算力核心产业规模达到1.8万亿元。
工业和信息化部新闻发言人、总工程师赵志国近日表示,近期通用人工智能的发展对算力提出了更高要求,工业和信息化部将重点从三方面着手:一是持续推动算力基础设施建设;二是聚力推进关键核心技术攻关和产业升级;三是激发算力应用赋能价值。
而且在“百模”大赛下,全球算力需求呈指数级增加,带动了国内AI服务器市场快速增长。本期《数字化转型方略》将和大家聊聊什么样的算力,才能满足大模型千亿数量级的训练需求?AI算力还有哪些发展方向?
总的来说,AI算力的发展已经成为数字经济时代的重要驱动力,无论是芯片厂商、服务器厂商、还是云厂商,他们都在不断地满足着AI算力的需求,推动着AI技术的发展。而对于我们来说,未来是如何用好AI算力,产生创新洞见。
《数字化转型方略》2023年第7期:http://www.zhiding.cn/dxinsight/2307
好文章,需要你的鼓励
AI项目从试点转向生产阶段时,企业面临意外的云成本激增问题。推理工作负载需要全天候运行以确保服务正常,成本可能一夜间飙升1000%以上。许多公司每月费用从5000美元激增至50000美元。为控制成本,企业开始采用混合架构:将推理工作负载迁移至本地或托管设施,训练任务保留在云端。这种模式可削减60-80%的基础设施支出,在保持性能的同时实现成本可预测性。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
企业在AI模型选择上面临开放源码与封闭专有技术的抉择,这一选择对财务和定制化都有重要影响。开放模型如Meta Llama提供更大控制权和定制选项,而封闭模型如OpenAI GPT-4o提供简化使用和企业级支持。专家建议采用投资组合策略,根据准确性、延迟、成本、安全性等因素选择合适模型,而非单一选择。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。