2017年,Alpha Go一战成名,这一年也成为AI的一个重要转折点,因为人们看到了人工智能可以创造不可估量的商业价值。
Forrester数据显示,在2020年,企业在应用AI技术时面临的最大挑战还是技术不够成熟,但到了2021年这一挑战已经退居第十位。AI应用已经跨越技术不够成熟阶段,开始进入到规模化发展阶段。
现在像自然语言处理、机器学习、机器视觉等诉求在市场、资本上已经逐渐凸显,AI+其实早已渗透在人们生活的方方面面。
虽然AI+正如火如荼的推进中,但在AI落地上还是有一定的难点。在Forrester首席分析师穆飞看来,主要体现在AI工程化能力,因为开发少量AI模型并不难,开发、部署、监控成百上千个AI模型的工程化却难度较大。
AI的发展始终离不开数据、算法和算力这“三驾马车”,短短几年间AI技术实现了飞速的发展,都是源于三者循环增强的关系。数据和算法都离不开算力的支撑,数据的不断增加需要更强的算力处理数据,同时人工智能不断训练、应用又催生更多数据反过来对算力提出需求。
当然还有一个重要问题就是AI成本居高不下,在算力上,AI的性能变得更强,所需的算力也大幅攀升;在应用上,AI并非即插即用,它不会自己训练自己,也不可能自我修复,这些都需投入大量人力;在效率上,一个AI模型从研发到一个产品,经历周期复杂,流程分散且欠缺标准化,导致开发效率低。
数据清洗标注、算法量产、算力优化、生产过程标准化等等方面都是降低AI成本、提高效率、实现规模化的因素。
“企业提高使用AI的效率可以从更高效的数据准备(如feature store)、自动化建模以及ModelOps工具链入手。”Forrester首席分析师穆飞认为,企业需要一种科学的AI治理方式,可以借鉴ModelOps方法论,模型开发仅仅是第一步,应该持续监控并根据结果及时更新模型,形成流程化、标准化的闭环。
企业在衡量AI价值上也不能一味追求技术先进性,要更多落实到业务流程,通过业务价值来衡量。当AI广泛与决策系统联动时,也将变革企业的根本运营模式,超4000亿的中国市场规模也并非空想。
《数字化转型方略》2022年第9期:http://www.zhiding.cn/dxinsight/2209
好文章,需要你的鼓励
微软正式确认配置管理器将转为年度发布模式,并将Intune作为主要创新重点。该变化将于2026年秋季生效,在此之前还有几个版本发布。微软表示此举是为了与Windows客户端安全和稳定性节奏保持一致,优先确保安全可靠的用户体验。配置管理器将专注于安全性、稳定性和长期支持,而所有新功能创新都将在云端的Intune中进行。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
人工智能初创公司aiOla推出基于流匹配训练技术的语音AI模型Drax,挑战OpenAI和阿里巴巴等巨头。该模型重新定义语音算法训练方式,能在嘈杂环境中准确识别语音,兼顾速度与准确性。相比OpenAI的Whisper和阿里巴巴Qwen2,Drax采用并行流处理技术,速度提升32倍,词错误率仅7.4%。该模型已在GitHub开源,提供三种规模版本。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。