全球领先的分析平台Tableau今日宣布推出商业科学,这是一种新型人工智能支持技术,可降低数据科学技术的门槛,帮助企业用户和分析人员更快地做出更明智的决策。当今市场背景下,快速响应成为竞争的有力优势,而商业科学将利用数据、简化模型创建、预测、假设情景、预想和其他分析方法,为更多人提供更快、更便利的支持。
本月底,Tableau将在其2021.1版本中通过“Einstein Discovery”支持商业科学。将Einstein Discovery倍受信赖的实时预测和建议功能集成到Tableau中,将帮助人们不仅了解当下情况,以及发生的原因,更可以深入探索对业务可能带来的影响,从而采取更主动的行动。五年多来,Einstein Discovery帮助Salesforce客户在几分钟内快速获得洞察,无需复杂的数据模型,便可分析了解数百万行数据的模式。
“如今,大多数企业用户尚无法使用数据科学。业务分析人员依靠数据科学家,建立复杂的模型,从而提取精确的见解,服务业务分析。但获得这些见解的过程可能非常复杂、昂贵且耗时,”IDC智能未来研究总监Chandana Gopal表示。“尽管数据科学可以挖掘强大的见解,但有时需要在精度和时耗之间进行权衡。商业科学能够促成双方的平衡,并致力于让更多人能使用数据科学,并依据数据科学采取行动。”
商业科学将助力数据科学家和高级分析师深入工作。
“数据科学始终能够解决重大问题,但只有组织内的某几个特定人员拥有这种能力,”Tableau首席产品官Francois Ajenstat表示。“要建立真正的数据驱动型组织,我们需要为尽可能多的人释放数据的力量。实现数据科学大众化将帮助更多人更快地做出更明智的决策。”
例如,客户可以使用商业科学来提高供应链效率、预测订单达成的可能性或实现商品或服务交付的最大化。数据科学可以帮助疫苗研发,而商业科学可以帮助疫苗高效分配运送和接种。
“像Einstein Discovery这样的机器学习平台是数据科学大众化的下一个前沿领域,”Verizon数据分析高级经理Siddharth Dayama表示。“集成到Tableau中的Einstein Discovery为各企业的现有仪表板清单带来了预测功能,并在与自动生成机器学习模型结合使用时,企业可以在其历史数据中探索模式、趋势和相关性,而无需编写任何代码。在现有的商务智能基础架构上对ML/AI功能进行分层,为解决日常业务问题开辟了无限的可能性。”
Tableau 2021.1 升级功能还包括:
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。