企业与AI的融合显然已不再是战略选择的可选项,而是发展的必选项。麦肯锡之前发过一份超过200页的报告,预计仅 AI 软件和服务领域,就可能在 2040 年创造高达 23 万亿美元的年度经济价值。
在这场智能化的转型浪潮中,也不仅是科技互联网巨头的游戏,各行各业的传统企业也正经历着前所未有的变革压力。DeepSeek等开源大模型的出现,极大降低了技术门槛。如果借用罗杰斯的"创新扩散理论"来审视当下的AI浪潮,我们正处于从"早期采纳者"向"早期大众"过渡的关键时刻。
然而,技术扩散的路径从未平坦。通过观察企业AI实践,我们发现其中存在一种构性矛盾:AI技术的理论框架具有普适性,但每个企业的应用场景却有其独特性,这意味着企业无法简单复制他人的成功模式,必须进行创造性再造。
不过,虽然直接复制照搬不可行,但跨行业、跨场景的方法论提炼与思维模式借鉴却大有可为。
比如:AI早期采纳者的探索过程,包括其失败教训与成功经验,会是后来者的宝贵学习资源。再比如:如果能有效组织技术提供方、实施方与应用方三方对话,也可形成良性的知识循环。
这也就是"AI启示录"栏目的设立初衷了,我们希望构建一座横跨不同行业、连接各类企业的沟通桥梁。它不仅仅是技术实践的分享平台,更是一种思想交流的外化表现——帮助企业在变革中保持定力,在探索中推动创新。
好文章,需要你的鼓励
UniR(Universal Reasoner)是一种创新的推理增强方法,可为冻结的大语言模型提供即插即用的推理能力。由韩国科学技术院研究团队开发,该方法将推理能力分解为独立的轻量级模块,无需改变主模型结构。UniR的核心优势在于高效训练(仅更新小型推理模块)、出色的模型间迁移能力(小模型可指导大模型)以及模块组合能力(多个专用模块可通过logits相加组合使用)。在数学推理和翻译测试中,UniR显著超越现有微调方法,展示了轻量级模块如何有效增强大语言模型的推理能力。
Nebius团队开发了SWE-rebench,一个自动化管道用于从GitHub收集软件工程任务并进行去污染评估。该系统解决了两大挑战:高质量训练数据稀缺和评估基准容易被污染。通过四阶段处理(初步收集、自动安装配置、执行验证和质量评估),SWE-rebench构建了包含超过21,000个Python交互式任务的数据集,并提供持续更新的评估基准。研究发现部分语言模型在传统基准上的表现可能被污染效应夸大,而DeepSeek模型在开源模型中表现最为稳健。
这项研究提出了JQL(发音为"Jackal"),一种通过多语言方法提升大型语言模型预训练数据质量的创新系统。研究团队从拉马尔研究所等机构通过四阶段方法解决了多语言数据筛选的难题:先由人类评估内容教育价值创建基准数据,然后评估大型语言模型作为"评判者"的能力,接着将这些能力提炼到轻量级评估器中,最后应用于大规模数据筛选。实验表明,JQL在35种语言上显著优于现有方法,甚至能泛化到未见过的语言如阿拉伯语和中文,为多语言AI发展提供了高效可靠的数据筛选方案。
浙江大学和西湖大学研究团队开发的Styl3R实现了艺术风格化3D重建的重大突破,能在不到一秒内从少量未标定照片和任意风格图像创建具有多视角一致性的3D艺术场景。通过创新的双分支网络架构将结构建模与外观着色分离,系统不仅保持了原始场景结构,还准确捕捉了参考风格特征。与现有方法相比,Styl3R在处理速度和视觉质量上均显著领先,为创意内容制作开辟了全新可能。