企业与AI的融合显然已不再是战略选择的可选项,而是发展的必选项。麦肯锡之前发过一份超过200页的报告,预计仅 AI 软件和服务领域,就可能在 2040 年创造高达 23 万亿美元的年度经济价值。
在这场智能化的转型浪潮中,也不仅是科技互联网巨头的游戏,各行各业的传统企业也正经历着前所未有的变革压力。DeepSeek等开源大模型的出现,极大降低了技术门槛。如果借用罗杰斯的"创新扩散理论"来审视当下的AI浪潮,我们正处于从"早期采纳者"向"早期大众"过渡的关键时刻。
然而,技术扩散的路径从未平坦。通过观察企业AI实践,我们发现其中存在一种构性矛盾:AI技术的理论框架具有普适性,但每个企业的应用场景却有其独特性,这意味着企业无法简单复制他人的成功模式,必须进行创造性再造。
不过,虽然直接复制照搬不可行,但跨行业、跨场景的方法论提炼与思维模式借鉴却大有可为。
比如:AI早期采纳者的探索过程,包括其失败教训与成功经验,会是后来者的宝贵学习资源。再比如:如果能有效组织技术提供方、实施方与应用方三方对话,也可形成良性的知识循环。
这也就是"AI启示录"栏目的设立初衷了,我们希望构建一座横跨不同行业、连接各类企业的沟通桥梁。它不仅仅是技术实践的分享平台,更是一种思想交流的外化表现——帮助企业在变革中保持定力,在探索中推动创新。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。