企业与AI的融合显然已不再是战略选择的可选项,而是发展的必选项。麦肯锡之前发过一份超过200页的报告,预计仅 AI 软件和服务领域,就可能在 2040 年创造高达 23 万亿美元的年度经济价值。
在这场智能化的转型浪潮中,也不仅是科技互联网巨头的游戏,各行各业的传统企业也正经历着前所未有的变革压力。DeepSeek等开源大模型的出现,极大降低了技术门槛。如果借用罗杰斯的"创新扩散理论"来审视当下的AI浪潮,我们正处于从"早期采纳者"向"早期大众"过渡的关键时刻。
然而,技术扩散的路径从未平坦。通过观察企业AI实践,我们发现其中存在一种构性矛盾:AI技术的理论框架具有普适性,但每个企业的应用场景却有其独特性,这意味着企业无法简单复制他人的成功模式,必须进行创造性再造。
不过,虽然直接复制照搬不可行,但跨行业、跨场景的方法论提炼与思维模式借鉴却大有可为。
比如:AI早期采纳者的探索过程,包括其失败教训与成功经验,会是后来者的宝贵学习资源。再比如:如果能有效组织技术提供方、实施方与应用方三方对话,也可形成良性的知识循环。
这也就是"AI启示录"栏目的设立初衷了,我们希望构建一座横跨不同行业、连接各类企业的沟通桥梁。它不仅仅是技术实践的分享平台,更是一种思想交流的外化表现——帮助企业在变革中保持定力,在探索中推动创新。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。