NVIDIA 在人工智能 (AI) 数据中心领域继续保持主导地位,其最新季度业绩显示收入增长 16%,较去年同期增长 93%。
公司数据中心业务季度收入达到 356 亿美元,全年收入达到 1,150 亿美元,较去年增长 142%。
NVIDIA CEO 兼创始人黄仁勋在准备好的讲话中表示:"Blackwell 的需求非常强劲,因为推理 AI 增加了另一个扩展定律 - 增加训练计算量可以让模型更智能,增加长期思考的计算量可以让答案更智能。"
"我们已成功实现了 Blackwell AI 超级计算机的大规模生产,在第一季度就实现了数十亿美元的销售额。AI 正在以光速发展,主动 AI 和物理 AI 为下一波 AI 革命奠定了基础,这将彻底改变最大的行业。"
在财报电话会议上,金融分析师就 DeepSeek (该模型需要较低算力的 GPU) 以及微软等云服务提供商 (CSP) 正在设计自己的 AI 优化芯片等问题向 NVIDIA 提出质疑。
根据 Seeking Alpha 发布的电话会议记录,CSP 约占 NVIDIA 业务的一半。但企业客户的需求也在增长。黄仁勋表示:"我们看到企业业务未来会增长",他认为这代表了长期销售 NVIDIA GPU 的更大机会。
黄仁勋利用财报电话会议讨论了为什么他认为新的 AI 模型会推动需求增长,即使 AI 模型在计算效率方面变得更高。他说:"模型思考得越多,答案就越智能。OpenAI、Grok-3 和 DeepSeek-R1 等模型都是应用推理时间扩展的推理模型。推理模型可能消耗 100 倍的计算量。未来的推理模型可能消耗更多计算量。"
当被问及 CSP 开发专用集成电路 (ASIC) 而不使用 GPU 的风险时,黄仁勋通过讨论技术栈的复杂性作出回应,暗示如果使用定制芯片而不是标准 GPU,这将是一个挑战。他说:"软件栈非常困难。制造 ASIC 与我们的工作没有区别 - 我们构建新架构。"
据黄仁勋称,建立在 NVIDIA 架构之上的技术生态系统比两年前复杂 10 倍。他说:"这很明显,因为世界在架构之上构建的软件数量正在呈指数级增长,AI 发展非常快。因此,在多个芯片之上整合整个生态系统是很困难的。"
在讨论 NVIDIA 的业绩时,Forrester 高级分析师 Alvin Nguyen 表示:"尽管这一成就令人震惊,但 NVIDIA 再次创下记录似乎已成为常态。创纪录的收益表明对 NVIDIA AI 产品的需求持续存在。强调推理模型驱动更多而不是更少的计算,这是对 DeepSeek 影响其需求担忧的一个很好的口头反驳。"
然而,在 Nguyen 看来,黄仁勋对替代 NVIDIA GPU 的定制芯片问题的回应是"轻描淡写的"。
他说:"对于亚马逊、微软和谷歌的定制芯片威胁其业务的问题,他们的回应是轻描淡写的,忽视了这些公司需要 NVIDIA 之外的选择,以及需要专门针对其 AI 训练和推理需求定制的半导体。"
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。