NVIDIA 在人工智能 (AI) 数据中心领域继续保持主导地位,其最新季度业绩显示收入增长 16%,较去年同期增长 93%。
公司数据中心业务季度收入达到 356 亿美元,全年收入达到 1,150 亿美元,较去年增长 142%。
NVIDIA CEO 兼创始人黄仁勋在准备好的讲话中表示:"Blackwell 的需求非常强劲,因为推理 AI 增加了另一个扩展定律 - 增加训练计算量可以让模型更智能,增加长期思考的计算量可以让答案更智能。"
"我们已成功实现了 Blackwell AI 超级计算机的大规模生产,在第一季度就实现了数十亿美元的销售额。AI 正在以光速发展,主动 AI 和物理 AI 为下一波 AI 革命奠定了基础,这将彻底改变最大的行业。"
在财报电话会议上,金融分析师就 DeepSeek (该模型需要较低算力的 GPU) 以及微软等云服务提供商 (CSP) 正在设计自己的 AI 优化芯片等问题向 NVIDIA 提出质疑。
根据 Seeking Alpha 发布的电话会议记录,CSP 约占 NVIDIA 业务的一半。但企业客户的需求也在增长。黄仁勋表示:"我们看到企业业务未来会增长",他认为这代表了长期销售 NVIDIA GPU 的更大机会。
黄仁勋利用财报电话会议讨论了为什么他认为新的 AI 模型会推动需求增长,即使 AI 模型在计算效率方面变得更高。他说:"模型思考得越多,答案就越智能。OpenAI、Grok-3 和 DeepSeek-R1 等模型都是应用推理时间扩展的推理模型。推理模型可能消耗 100 倍的计算量。未来的推理模型可能消耗更多计算量。"
当被问及 CSP 开发专用集成电路 (ASIC) 而不使用 GPU 的风险时,黄仁勋通过讨论技术栈的复杂性作出回应,暗示如果使用定制芯片而不是标准 GPU,这将是一个挑战。他说:"软件栈非常困难。制造 ASIC 与我们的工作没有区别 - 我们构建新架构。"
据黄仁勋称,建立在 NVIDIA 架构之上的技术生态系统比两年前复杂 10 倍。他说:"这很明显,因为世界在架构之上构建的软件数量正在呈指数级增长,AI 发展非常快。因此,在多个芯片之上整合整个生态系统是很困难的。"
在讨论 NVIDIA 的业绩时,Forrester 高级分析师 Alvin Nguyen 表示:"尽管这一成就令人震惊,但 NVIDIA 再次创下记录似乎已成为常态。创纪录的收益表明对 NVIDIA AI 产品的需求持续存在。强调推理模型驱动更多而不是更少的计算,这是对 DeepSeek 影响其需求担忧的一个很好的口头反驳。"
然而,在 Nguyen 看来,黄仁勋对替代 NVIDIA GPU 的定制芯片问题的回应是"轻描淡写的"。
他说:"对于亚马逊、微软和谷歌的定制芯片威胁其业务的问题,他们的回应是轻描淡写的,忽视了这些公司需要 NVIDIA 之外的选择,以及需要专门针对其 AI 训练和推理需求定制的半导体。"
好文章,需要你的鼓励
Akamai的分布式边缘架构从设计之初就以韧性为核心,全球平台通过跨区域负载均衡和智能路由技术,确保即使某些节点出现故障,流量也能无缝切换至可用节点。
上海交通大学与阿里巴巴合作研究发现,大型语言模型在推理时展现出"预设与锚定"的思考节奏。通过分析注意力机制,研究团队首次揭示了AI内部的推理逻辑,并基于此开发了三种新的强化学习训练策略,在多个数学推理任务上获得显著性能提升,为AI系统的可解释性和训练效率提供了突破性进展。
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
商汤科技研究团队开发的InteractiveOmni是一个突破性的全模态AI助手,能够同时处理图像、视频、音频和文字,并具备强大的多轮对话记忆能力。该模型采用端到端架构,实现了从多模态输入到语音输出的统一处理,在多项基准测试中表现优异。特别值得关注的是,4B参数版本就能达到接近7B模型的性能,且已开源供研究使用。