最近一段时间,各种计算大会相继召开。前几年我们一直在谈建设算力底座成为经济发展的基础,现在我们更多在谈智算,甚至异构智算,已成为生成式AI发展的基石。
从PC时代到移动互联网时代,再到如今的AI时代,每一轮技术变革都在不断降低使用门槛和开发门槛,智算的发展也将进一步降低生成式AI的应用,使其可以快速推进。
生成式AI的成功并非偶然,一方面是大模型能力的引入,一方面就是智算在多个层面的支撑。从海量数据的快速处理到模型的训练推理,智算为生成式AI的创新提供了无与伦比的动力。
智算不仅仅是计算能力的提升,更是数据处理、算法优化和资源管理的综合体现。智算的普及将推动各行各业的数字化转型,实现更精准的数据分析,优化决策过程,提升效率等。
例如,零售行业正在利用智算支撑的AI,分析客户数据,实时调整库存和促销策略。商家能够预测消费者的需求变化,进而优化供应链,提高整体运营效率,提供更精准的购物体验。
但大模型训练不仅关系到企业的算力成本,也与业务方向和资金周转效率密切相关。企业需要根据自身的需求选择自建、租用、公有云等不同的模式。
很多智算服务商都已经构建了包括大模型训练、推理、训推一体以及边缘推理在内的AI全场景服务器产品组合,为生成式AI算力成员发展提供全面的支撑。
同时生态合作也在不断拓展中,因为不同的行业、不同的场景都有大量的“最后一公里”问题要解决,集合生态的力量可以更好地帮助生成式AI平稳落地。
本期《数字化转型方略》我们将进一步探讨智算产业的发展方向,以及如何更好地支撑生成式AI的发展,因为只有产业的蓬勃,才能看到更多生成式AI在企业落地应用。
未来让算力变得更智能这件事还会不断推进,为生成式AI发展持续铺路。
《数字化转型方略》2024年第10期:http://www.zhiding.cn/dxinsight/2410
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。