加拿大保险公司Manulife在过去几年中投入了数十亿美金进行数字化转型之旅,利用AI的力量简化企业运营和增强客户体验。
Manulife亚洲首席分析官、新加坡首席营销官Mark Czajkowski强调,拥有强大数据基础设施的重要性,让公司能够在生产中部署数百种机器学习模型。
他说:“需要打下良好的基础,并以正确的方式构建,因为最终一旦你开始接入所有模型,如果你的数据质量很差或者是没有以正确结构捕获数据的话,你所能做的事情就会受到限制。”
生成式AI的爆发式增长,进一步加速了Manulife公司的AI计划。Czajkowski表示:“这种关注引发了高层领导团队的大量创新和好奇心。”他指出,这推动了新基础设施的开发,以支持实时的、API驱动的生成式AI应用。
Manulife公司的AI战略以惠及多个市场的关键用例为中心,其中一个主要重点是销售代理支持。随着代理的客户组合不断增长,他们越来越难以跟踪个人需求和偏好。
为了解决这个问题,Manulife公司将AI驱动的洞察直接集成到自己的代理平台中。“对于每个产品类别,我们可以快速地告诉代理当前的覆盖范围和潜在差距,”Czajkowski表示。
该平台利用生成式AI生成针对每个客户的谈话要点,使代理能够进行更有效的对话,并根据个人情况量身定制他们的建议。
但生成式AI并非全部。Czajkowski表示,这些建议的基础是机器学习输出,必须先进行转换,然后才能被生成式AI利用。
他说:“例如,机器学习模型可能会生成0.98的分数,但生成式AI并不知道这意味着什么。我们必须重构输出,这样0.6到0.98之间的分数就意味着你更倾向于退休。我们将它输入到提示中,然后进行解释。”
Manulife公司还在呼叫中心应用了AI。以前,代理要花费大量时间查找合同文件和整合信息,而宏利公司正在使用生成式AI实现这个过程的自动化,让呼叫中心代理能够快速访问相关信息并快速提供服务。
Czajkowski表示,这个销售代理平台利用了机器学习模型,同时其他功能(例如呼叫中心代理的合同查找)则主要使用了检索增强生成(RAG)技术来有效地整合信息。
为解决繁琐的承保流程,Manulife公司还使用生成式AI来提取和分析医疗文件,总结来自各种来源的关键信息,以便于审查。
“我们已经能够为承保人自动化所有流程,并以他们容易理解的方式构建信息,这样他们就可以花更多时间进行裁决和决策工作,”Czajkowski说。
承保应用还会标记由于手写或其他问题导致的转录医疗数据中可能存在的不准确性,让承保人可以查看和更正信息,然后通过反馈来提高模型的准确性。AI聊天助手也可以帮助承保人快速访问文件中的特定信息。
Czajkowski反复强调了数据质量的重要性,并且认为,生成式AI并不是“魔法”,“真正需要投入精力研究数据,以及数据的结构和转换方式”。
这种以数据为中心的方法体现在Manulife改进的系统开发流程中,这种流程更加注重预先捕获和管理数据质量。这个跨职能的团队由IT、数据科学以及用户体验(UX)和用户界面(UI)专业人员组成,协同部署AI用例,促进整个组织对数据重要性的共同理解。
此外Manulife还采取措施确保他们以负责任的方式使用AI。Manulife公司建立了一个模型治理流程,其中包括用例的重要性评估、模型风险管理、与道德原则和监管准则的一致性。Czajkowski表示,这个流程确保他们是以负责任的方式使用了数据,管理数据漂移并指导模型再训练工作。
虽然他承认目前实施生成式AI技术的成本很高,但他表示,“它越来越便宜,也就是说,可以启用更多用例”,他补充说,Manulife公司会评估每个AI项目的商业案例,以确保收益是大于成本的。“当我们开始投资任何项目时,我们都会考虑这一点,”Czajkowski说。
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。