Gartner于近日最新发布2024年中国数据、分析和人工智能技术成熟度曲线,该曲线显示,未来两到五年,大量具有颠覆性或较高影响力的创新技术可能会实现主流采用。其中AI相关的创新包括复合型AI、决策智能、国产AI芯片、LLM和多模态GenAI。
Gartner研究总监闫斌表示:“到2027年,超过60%的企业机构将把AI素养纳入数据和分析战略,而目前这一比例还不到 5%。到2028年,50%构建于2023年之前的中国数据和分析平台,将因为与生态系统脱钩而过时。 到2028年,30%的企业机构将把数据变现或数据入表纳入其数据战略。”
(图一、2024年中国数据、分析和人工智能技术成熟度曲线)
与AI相关的几项创新技术
复合型AI
复合型AI是指组合利用(或融合)不同AI技术来提高学习效率、生成层次更丰富的知识表示。复合型AI提供了更丰富的AI抽象机制,并最终提供了一个能够以更有效方式解决更广泛业务问题的平台。复合型AI可为中国企业带来两大益处。第一,将AI的力量推广至无法访问大量历史或标签数据、但拥有大量人类专业知识的企业机构。第二,扩大AI应用的范围,提升此类应用的质量,这也意味着能够应对更多类型的推理挑战。根据所应用的具体技术,还可产生其他一系列益处,包括提高可解释性、韧性,以及支持增强智能。
国产AI芯片
由于美国对高性能AI芯片的限制,中国企业不得不自行研发AI芯片,以满足本土AI快速发展的需求。
最新的生成式人工智能(GenAI)技术需要使用数千个AI加速器来训练基础模型和支持推理工作负载。由于先进制造工艺的限制,国产AI芯片的性能落后于全球领先供应商产品的性能。因此,中国企业需要对AI基础设施进行更多投资。IT领导者应将重点放在AI应用上,而不是使用针对推理工作负载优化的国产AI芯片来训练基础模型上。
LLM
大语言模型(LLM)是一种使用大量无标签文本数据进行训练的AI基础模型。借助大语言模型,应用可以完成一系列任务,包括回答问题、内容生成、内容摘要、检索增强生成 (RAG)、代码生成、语言翻译和会话聊天。
此类模型拥有广泛的应用场景,包括文本生成、问答系统构建、文档总结和分类、文本翻译和编辑等。
多模态GenAI
多模态生成式人工智能(GenAI)能够在生成式模型中组合利用多种类型的数据输入和输出,例如图像、视频、音频、文本和数值型数据。多模态功能允许模型与不同模态下的输出进行交互,并生成相应的输出,有效提升了GenAI的可用性。
多模态GenAI支持添加以往难以实现的新特性和功能,将对企业应用产生颠覆性影响。目前,多模态模型通常仅限于两种或三种模态,但未来几年内,将涵盖数量更多 的模态。
好文章,需要你的鼓励
9月13日的PEC 2025 AI创新者大会暨第二届提示工程峰会上,“年度提问二:新工作时代:AI工作流由谁主导?”从企业实践到技术实现、从业务落地到战略决策,展开了一场高密度的思想碰撞与经验分享,将AI工作流背后的难题和解决路径彻底揭开。
土耳其伊斯坦布尔Newmind AI团队开发出首个专门针对土耳其语的AI幻觉检测系统Turk-LettuceDetect,能够逐字识别AI生成内容中的虚假信息。该系统使用三种不同的AI模型,在包含17790个样本的数据集上训练,最佳模型达到72.66%的检测准确率。这项研究填补了土耳其语AI安全检测的空白,为8000万土耳其语使用者提供了更可靠的AI交互体验。
在9月13日召开的“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场主题为“新创意时代,AI如何定义‘第十艺术’?”的圆桌对话引发了热烈讨论。至顶AI实验室联合主理人路飞携六位数字艺术家与AI创业者,围绕AI在艺术中的角色、价值与未来展开了一场深度对谈。
法国研究团队开发了"推理核心"训练环境,专门培养AI的基础推理能力。该系统包含18个核心任务,涵盖逻辑推理、规划、因果分析等领域,能无限生成新题目并精确控制难度。与传统依赖固定题库的方法不同,推理核心专注于培养通用认知能力,并使用专业工具验证答案。GPT-5测试显示任务具有挑战性,为AI推理能力发展开辟新路径。