在大模型的世界里,有一些黑话,比如“抽卡”和“炼丹”。这些术语听起来轻松有趣,但要让“仙丹”真正发挥作用,背后离不开一个关键要素——知识库。
从自然语言处理(NLP)、内容生成到图像识别,大模型在各个领域都展现出了惊人的能力。然而大模型在处理特定领域问题时,可能会因缺乏必要的背景知识,导致输出结果不够准确或不够相关。
专为AI搭建的知识库应该如何理解?
知识库的核心思想是让大模型可以利用额外的知识,其不仅仅是数据的存储,还包含了经过验证和整理的信息。
大模型在应用过程中,往往需要处理高度专业化和复杂的数据。通过引入知识库,模型可以访问高质量和高度相关的数据,从而提高结果的准确性。例如,在医疗领域,知识库可以提供最新的医学研究和临床试验数据,使得AI能够更准确地进行诊断和治疗推荐。
通过提供专业化信息、提升数据质量、支持复杂推理、动态更新知识这些能力,知识库使大模型在实际应用中发挥更大价值和作用,可谓如虎添翼。
基于知识库的种种优势,通过模型训练就可以开发出多样化的能力,像智能搜索引擎、自动化验证工具、语言学处理工具、自动化助手等,更便捷地进行知识提取与管理,提升员工工作效率。
本期数字化转型方略将以构建AI知识库框架为主线进行探讨,一个高效、智能的AI知识库是如何建设的,而且我们也寻找到市面上的一些产品工具来一窥究竟。
总之,知识库不仅为大模型的实际应用提供了坚实的基础和保障,通过两者的融合还能发挥出更大的潜力。
《数字化转型方略》2024年第5期:http://www.zhiding.cn/dxinsight/2405
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。