在大模型的世界里,有一些黑话,比如“抽卡”和“炼丹”。这些术语听起来轻松有趣,但要让“仙丹”真正发挥作用,背后离不开一个关键要素——知识库。
从自然语言处理(NLP)、内容生成到图像识别,大模型在各个领域都展现出了惊人的能力。然而大模型在处理特定领域问题时,可能会因缺乏必要的背景知识,导致输出结果不够准确或不够相关。
专为AI搭建的知识库应该如何理解?
知识库的核心思想是让大模型可以利用额外的知识,其不仅仅是数据的存储,还包含了经过验证和整理的信息。
大模型在应用过程中,往往需要处理高度专业化和复杂的数据。通过引入知识库,模型可以访问高质量和高度相关的数据,从而提高结果的准确性。例如,在医疗领域,知识库可以提供最新的医学研究和临床试验数据,使得AI能够更准确地进行诊断和治疗推荐。
通过提供专业化信息、提升数据质量、支持复杂推理、动态更新知识这些能力,知识库使大模型在实际应用中发挥更大价值和作用,可谓如虎添翼。
基于知识库的种种优势,通过模型训练就可以开发出多样化的能力,像智能搜索引擎、自动化验证工具、语言学处理工具、自动化助手等,更便捷地进行知识提取与管理,提升员工工作效率。
本期数字化转型方略将以构建AI知识库框架为主线进行探讨,一个高效、智能的AI知识库是如何建设的,而且我们也寻找到市面上的一些产品工具来一窥究竟。
总之,知识库不仅为大模型的实际应用提供了坚实的基础和保障,通过两者的融合还能发挥出更大的潜力。
《数字化转型方略》2024年第5期:http://www.zhiding.cn/dxinsight/2405
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。