没有什么比在瑞士建设铁路更艰巨了,因为瑞士几乎都是山地,大部分山地现在都建有桥梁并且布满了山洞,就像是当地著名的奶酪一样,千疮百孔。
瑞士的铁路路网也是欧洲最密集的,以至于无法再进行扩展,因为所有必要的区域都已被充分利用。在二月份的“Hamburg IT Strategy Days”上,Jochen Decker表示:“我们只能优化。”这项工作非常迫切,因为瑞士联邦铁路(SSB)预计2034年的乘客人数将比现在增加30%到40%。这将给不变的铁路路网带来巨大的压力。因此,Decker来到汉堡,报告如何实现这一目标,并展示人工智能将发挥的核心作用。
前所未有的机遇
和德国铁路公司不同,SBB是一家集客运、货运、基础设施和房地产于一体的综合集团,这为规划实施投资和创新提供了便利。该集团每年的IT预算高达8.5亿欧元,约占销售额的7%。
几年前,SBB制定了三项优化计划,到2027年将耗资约10亿欧元。在交通管理方面,目标是更好地利用线路,特别是缩短列车之间的距离。在生产规划方面,则希望提高人员和材料的利用率,确保列车尽可能少地停滞,并确保列车司机将尽可能多的工作时间用于驾驶而非其他工作上。该计划的第三部分是资产管理,旨在减少材料损耗,更好地利用车间。
然而,在针对这三项计划的10亿欧元拨款中,分给人工智能的只有2000万欧元。在SBB从事该领域工作已有五年的Decker表示:“然而,这为我们带来了前所未有的机遇。”
人工智能实现预测性维护
人工智能让德克尔着迷的地方不仅在于它的可能性,还在于它的低成本,比如在轮对和轨道管理方面。借助摄像头和传感器对车轮磨损情况的持续监控,以及对在此过程中获得的结果进行评估,他可以通过数据非常准确地预测车轮何时需要更换。如果将这一预测与维修车间的使用数据相匹配,就能实现真正的预测性维护,因为车轮的更换既不会太早也不会太晚,而且维修车间有时间也有能力立即进行更换。Decker表示:“这样做的前提是要有高质量的数据”,但这并不需要花很多钱,至少对人工智能来说是这样。在这个例子中,使用人工智能的费用不到30万欧元。
SBB 在轨道维护方面也采取了非常类似的方法。他们使用了测量车,让其以120公里/小时的速度在轨道上行驶,对轨道状况进行评估。他表示:“如果在测量过程中发现裂缝,那么问题总是:这是我们前一天发现的同一条裂缝还是相距只有5厘米的一条新裂缝?”人工智能可以帮助区分这两种情况。
SBB使用人工智能的另一个例子是运营管理,即优化列车路径利用率。毕竟,哪一列火车在哪里运行,这个问题的答案非常复杂。如果你想横穿瑞士,你可以在无数条路线中进行选择。当然,使用人工智能进行规划的成本要比建造新的隧道和轨道低得多,因为后者已经不再是一个可行的选择。
保持简单
Decker还坚信,如今使用人工智能比两三年前要容易得多,因为 ChatGPT 等流行应用为人工智能打开了大门,包括企业董事会的大门。然而,对技术的痴迷有时会导致过度复杂化。他表示:“在某些情况下,数据科学家们发明出了客户根本不存在的问题,仅仅是因为数据允许这样做。”
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。