案例基本内容和执行情况
本项目针对数据要素流通中的数据安全和隐私保护等问题,突破了联邦学习与多方安全计算混合引擎架构、密态数据联合统计与建模、基于指令集加速的高性能分布式联合计算、高性能安全对齐和匿踪查询算法、隐私计算互联互通数据和算法模块标准化等关键技术;形成了一套可信隐私计算技术体系,研建了基于隐私计算的可信数据要素市场共享平台,包含至少10种联邦特征工程算法、10种匿踪联邦算法,实现联邦模型评估算法,输出至少20种模型评估指标项,实现数据可信高效共享与数据隐私保护;并形成了标准化的隐私计算算法协议互联互通框架和跨平台隐私计算互联互通管理系统,支持千万级数据的可信互联互通,数据交易金额达到千万元级。本项目研究成果面向金融、政务领域开展了应用,向大型数据交易中心、金融机构等提供服务,解决了政府、金融机构、企业间跨域数据融合和隐私保护等问题,实现了数据价值的可信流转和共享,推动我国数据要素市场安全规范地运行。
案例主要经济成效和社会成效分析
(1)经济成效:本项目通过可信数据要素市场共享平台的应用,解决了政府、金融机构、企业间跨域数据融合问题,保障了信贷风险联合监测、跨机构黑名单共享等业务的安全性、高效性,有效避免多头借贷、票据欺诈、洗钱等金融风险;减少损失在千万元级别。项目建立数据要素市场规范与隐私保护体系,将规范与体系推广应用于全领域场景,成果转化合同或协议数预计超过15个,销售额超过千万元,经济效益显著,有望成为我国数据要素市场隐私保护应用模式革新的成功典范。
(2)社会成效:项目依托区块链与数据安全全国重点实验室、区块链安全与平台技术教育部工程研究中心、大数据联合计算中心等国家及省部级科研平台,以产学研用强强联合的方式凝聚优势互补的技术队伍,开展科技创新活动,推动我国和我省在数据要素市场的创新发展。通过突破数据要素可信共享关键技术,构建数据要素市场生态,依托行业龙头机构开展大规模应用验证示范,设计制定隐私计算算法协议原语定义规范,突破隐私计算互联互通数据和模块标准化技术,推动数据要素与实体经济的深度融合,根据可信隐私计算技术体系合理性、安全性和有效性的测试验证结构,有效指导我国和我省数据要素市场可信共享技术发展及产业化落地。具体如下:
1)通过可信数据要素市场共享平台研建,推动数据要素与隐私计算深度融合,构建数据要素可信共享生态环境;
2)汇聚高校、研究机构和产业化团队等开展协同攻关,突破隐私计算前沿技术和具有国际竞争力的关键和新型技术,在隐私计算领域培育一批能够覆盖前沿理论、工程技术、系统测试和产业应用的人才队伍,孵化具有国际影响力的自主创新科研团队与企业,为金融、政务等领域的数据要素应用创新提供人才保障,为我国数据要素战略提供坚实有力的平台和人才支撑。
好文章,需要你的鼓励
谷歌宣布为Chrome iOS版推出新功能,用户可在工作和个人谷歌账户间轻松切换,无需反复登录登出。该功能支持托管账户浏览,实现严格的数据分离,工作账户的标签页、历史记录和密码等本地数据与个人浏览完全隔离。随着企业不再提供公司手机,员工常需在个人设备上访问公司资源,此更新有助企业允许员工使用自选设备。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
OpenAI宣布其最新实验性推理大语言模型在2025年国际数学奥林匹克竞赛中达到金牌水平。尽管机器在数学推理、代码生成等认知任务上表现卓越,但这并不意味着它们具备真正的智能。机器缺乏知识迁移能力、情感理解、自我意识、内在动机等关键特征。它们无法像人类那样灵活适应新环境,也不具备主观体验和意识。真正的智能需要多方面综合能力,而非仅仅在特定任务上的优异表现。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。