大数据监管驱使下,金融监管机构正在向实时监管、智能监管、穿透监管的模式发展,对金融机构的监管统计提出更为严格要求。数字化能力不足、手工统计较为普遍、竖井式开发、数据不同源、加工不一致、数据应用模式单一成为制约北京银行监管数字化转型的痛点。为了实现“一个银行(One Bank)、一体数据(One Data)、一体平台(One Plat form) ”的数字发展战略,北京银行2022年启动了统一监管数据集市建设项目。
项目定位为“横纵打通”业务模式,实现明细层与指标层、跨报送间数据打通目标。目前已完成包括1104人行大集中、系统性重要银行、EAST、人行金数等11个跨报送体系的约 6万项监管统计指标和约5000项明细数据资产盘点、整合和口径标准化,完成建设集市的明细层和整合层数据模型,未来可高效响应各类监管报送的要求,实现监管统计管理流程线上化和管理任务的自动化,并通过各类数据应用模式,支持各部门灵活自主使用监管数据,推动监管数据资产对业务及管理的赋能。
具体从五方面推进平台建设:一是通过以监管数据盘点为起点,摸清家底,分析各报送体系的指标、数据的范围,梳理业务口径和技术逻辑,厘清数据上下游链路关系。二是承接监管数据资产的盘点成果,全面覆盖北京银行以及分支机构的明细监管报送主题,建立统一监管集市的明细层。三是北京银行将监管数据质量管理向事前防范和事中管控延伸,从重视 “整改”转向关注“预防”。四是同步优化监管数据认责和认责体系,落实和细化各部门监管数据质量责任,推动解决历史数据认责争议问题。五是金融监管机构鼓励通过场景建设,大数据模型建设,人工智能应用,探索监管数据对业务及管理的应用领域,持续挖掘和释放监管数据的价值,实现监管数据资产由“盘点”走到“盘活”。
统一监管数据集市的架构主要由四部分组成。一是数据源层。即业务系统原始数据的存放地,通过数据湖获得。二是监管数据模型层。分为基础数据和汇总数据,基础数据按照不同的业务主题进行设计,如总账、客户、存款、贷款、银行卡等分类,基础数据在业务主题分类之上,采取多维设计的方式,进行维度和度量的抽象,形成行内可复用、易扩展的监管底层多维数据模型体系;汇总数据则是按照各类监管报送的要求进行数据汇总加工处理,包含指标模型的建立,为后续的前端应用提供易用数据和指标。
三是应用服务层。分为基础功能、指标管理和数据服务,基础功能主要提供满足监管报送相应的基础系统功能,如权限管理、报表管理、报表首页、报表收藏、报表导航和流程管理;指标管理主要是为了实现监管报送指标型数据的高度复用、业务自主定义、业务自主维护的设计思想,将各类监管报送具备同业务口径的指标进行提炼,确保在全行角度对外监管报送的口径一致性和正确性;数据服务则是各类监管报送的数据前端直观展现,和监管机构发布的表样或接口规范保持一致。四是用户层。主要为提供给系统使用者日常使用的功能,如报表填报、数据校验、报表审核、报表查询、系统管理等功能,同时可按照不同的报送机构实体进行分类,如法人机构、分支机构、并表机构等。
统一监管数据集市项目建设成效
统一监管集市平台为企业带来三方面的价值:
一是促生产经营成本下降。解决当前北京银行11类对外监管报送出口不统一,约5000项明细数据的监管数据源分散,约60000项统计指标和底层数据及加工口径不统一等问题,减负约30%的监管数据加工链路,有效缩短约30%报送前数据一致性核查时间,降低监管统计工作管理成本。
二是促协同效率提升。平台可以全面释放每月、季末统计人员约3-5个工作日报表加工时间,有效缩短监管数据质量问题定位时间,同步提升了全行数据一致性,提升全行内部经营统计分析的效率。
三是促经济效益提升。平台的多维指标应用模式有效推动监管数据价值应用投入。通过多维指标体系利用监管数据开展趋势分析、波动性分析、红黄灯预警,或是联合其他业务部门,以业务需求为驱动开展数据价值应用专项,更有预见性的开展行内业务和管理规划。
此外,统一监管集市平台项目成果落地后,将成为我国银行业实现明细层与指标层、跨报送间数据的管理理念,“横纵打通”式监管数据集市的成功落地案例。项目也促进了包括通过绿色、普惠金融、供应链等全行数据标准的统一和有效执行,补充了行内现有的数据标准缺口,对绿色、普惠金融、供应链等业务的有序开展提供了标准引领作用。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。