大数据监管驱使下,金融监管机构正在向实时监管、智能监管、穿透监管的模式发展,对金融机构的监管统计提出更为严格要求。数字化能力不足、手工统计较为普遍、竖井式开发、数据不同源、加工不一致、数据应用模式单一成为制约北京银行监管数字化转型的痛点。为了实现“一个银行(One Bank)、一体数据(One Data)、一体平台(One Plat form) ”的数字发展战略,北京银行2022年启动了统一监管数据集市建设项目。
项目定位为“横纵打通”业务模式,实现明细层与指标层、跨报送间数据打通目标。目前已完成包括1104人行大集中、系统性重要银行、EAST、人行金数等11个跨报送体系的约 6万项监管统计指标和约5000项明细数据资产盘点、整合和口径标准化,完成建设集市的明细层和整合层数据模型,未来可高效响应各类监管报送的要求,实现监管统计管理流程线上化和管理任务的自动化,并通过各类数据应用模式,支持各部门灵活自主使用监管数据,推动监管数据资产对业务及管理的赋能。
具体从五方面推进平台建设:一是通过以监管数据盘点为起点,摸清家底,分析各报送体系的指标、数据的范围,梳理业务口径和技术逻辑,厘清数据上下游链路关系。二是承接监管数据资产的盘点成果,全面覆盖北京银行以及分支机构的明细监管报送主题,建立统一监管集市的明细层。三是北京银行将监管数据质量管理向事前防范和事中管控延伸,从重视 “整改”转向关注“预防”。四是同步优化监管数据认责和认责体系,落实和细化各部门监管数据质量责任,推动解决历史数据认责争议问题。五是金融监管机构鼓励通过场景建设,大数据模型建设,人工智能应用,探索监管数据对业务及管理的应用领域,持续挖掘和释放监管数据的价值,实现监管数据资产由“盘点”走到“盘活”。
统一监管数据集市的架构主要由四部分组成。一是数据源层。即业务系统原始数据的存放地,通过数据湖获得。二是监管数据模型层。分为基础数据和汇总数据,基础数据按照不同的业务主题进行设计,如总账、客户、存款、贷款、银行卡等分类,基础数据在业务主题分类之上,采取多维设计的方式,进行维度和度量的抽象,形成行内可复用、易扩展的监管底层多维数据模型体系;汇总数据则是按照各类监管报送的要求进行数据汇总加工处理,包含指标模型的建立,为后续的前端应用提供易用数据和指标。
三是应用服务层。分为基础功能、指标管理和数据服务,基础功能主要提供满足监管报送相应的基础系统功能,如权限管理、报表管理、报表首页、报表收藏、报表导航和流程管理;指标管理主要是为了实现监管报送指标型数据的高度复用、业务自主定义、业务自主维护的设计思想,将各类监管报送具备同业务口径的指标进行提炼,确保在全行角度对外监管报送的口径一致性和正确性;数据服务则是各类监管报送的数据前端直观展现,和监管机构发布的表样或接口规范保持一致。四是用户层。主要为提供给系统使用者日常使用的功能,如报表填报、数据校验、报表审核、报表查询、系统管理等功能,同时可按照不同的报送机构实体进行分类,如法人机构、分支机构、并表机构等。
统一监管数据集市项目建设成效
统一监管集市平台为企业带来三方面的价值:
一是促生产经营成本下降。解决当前北京银行11类对外监管报送出口不统一,约5000项明细数据的监管数据源分散,约60000项统计指标和底层数据及加工口径不统一等问题,减负约30%的监管数据加工链路,有效缩短约30%报送前数据一致性核查时间,降低监管统计工作管理成本。
二是促协同效率提升。平台可以全面释放每月、季末统计人员约3-5个工作日报表加工时间,有效缩短监管数据质量问题定位时间,同步提升了全行数据一致性,提升全行内部经营统计分析的效率。
三是促经济效益提升。平台的多维指标应用模式有效推动监管数据价值应用投入。通过多维指标体系利用监管数据开展趋势分析、波动性分析、红黄灯预警,或是联合其他业务部门,以业务需求为驱动开展数据价值应用专项,更有预见性的开展行内业务和管理规划。
此外,统一监管集市平台项目成果落地后,将成为我国银行业实现明细层与指标层、跨报送间数据的管理理念,“横纵打通”式监管数据集市的成功落地案例。项目也促进了包括通过绿色、普惠金融、供应链等全行数据标准的统一和有效执行,补充了行内现有的数据标准缺口,对绿色、普惠金融、供应链等业务的有序开展提供了标准引领作用。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。