随着国内大财富管理时代的到来,传统的“卖方投顾”模式无法满足财富管理业务的发展需求,国元证券积极顺应行业转型发展趋势,用科技创新引领业务发展,在财富业务的核心链条中大量运用人工智能技术,用投研驱动资产配置,用资产配置驱动财富业务发展,打造出全新的财富业务科技发展模式,创造了全新的数字化应用场景。
具体建设内容如下:

第一,基金优选模块。公募基金的数量已接近2万只,每一只基金都具有不同的风险收益特征,业绩也具有很大的随机性,实现基金产品的分类和优选是资产配置的前提。项目在集合客户投资需求和基金的风险收益特征基础上,对全部基金进行了全新的分类(近50种),每一个分类都是一种细分资产,具备独立的风险收益特征。以此为基础,对不同分类建立不同的量化优选模型,开发了一套在宏观周期下遴选因子、模型的产品筛选方案,解决基金业绩随机性大的间题。最终,每一个细分的资产都匹配一定量的具有预期超额的基金列表,最终形成一套“资产-产品”的对应矩阵。
第二,资产预测模块。建立了统一的宏观六因子框架,在此框架下建立了多套大类资产轮动模型,完成前瞻性资产配置逻辑层面实现。子资产层面,建立了多套多周期轮动策略和择时策略,因子层面包括但不限于宏观经济、中观风格、微观行业、事件、资金流和各类风险因子等,组建统一的胜率、赔率、趋势度和拥挤度模型。基于Al算法训练适合当下市场环境的最佳因子,通过强化学习实现各个策略结果的融合,最终形成各类资产的多周期观点,以此实现前瞻性资产配置微调指引。
第三,客户投资框架学习模块。结合传统的客户基础属性,更多地关注客户的投资框架与投资能力,通过客户完整的历史交易记录,学习客户投资过程中在风格、行业上的偏好和投资能力,特别是券商的股票投资类客户群体,新增的投资类属性超百个,可精准描述客户在投资习惯与投资能力,为个性化资产配置提供了关键信息。

第四,提出“理性人”概念,开发资产配置策略专家系统和组合最优化算法,根据前述三个部分的结果,对单客户生产专有策略,形成资产配置或者组合配置,最终达到千人千面的资产配置方案。匹配基金组合策略画像与客户画像是本项目的关键技术,通过深度学习与强化学习匹配算法,将基金产品端丰富的标签画像与客户画像相结合,进行基于深度强化学习进行动态匹配。
在场景应用方面,本研究搭建了全新的投研框架,产品覆盖面广,可以灵活增减产品类型、因子和策略模型,使投资者享受最先进和实用的投研平台;在客户服务方面,课题全面升级算法,资产分类扩展数倍,为资产配置提供丰富工具,尽可能实现客户资产组成最优夏普,满足客户各类投资偏好;在技术创新方面,基金细分类Al聚类与排序算法支持基金细分分类下排序筛选,借助客户投资偏好标签分类,实现风险控制下的最优策略模型,尽可能提升投资者受益。在成果方面,课题能够有效帮助客户提升平均2%-10%个点的年化预期收益,显著降低回撤幅度2-3倍,夏普比率得到显著性提升。
该项目未来将转化为公司的TAMP平台,成为国内首个商用TAMP平台,为财富业务的发展提供核心竞争力。通过平台的智能化服务,线上向客户提供标准化投资策略服务,线下向一线人工提供个性化策略工具,向基金投顾业务提供最优的基金组合策略,同时做到研投能力输出,向具有财富业务的金融机构提供资产配置服务,将实现线下投顾服务效能提升6-8倍,客户投资收益实质性提升占比客户达75%;不仅为行业,也为整个社会的居民财富保值增值目标提供更加灵活、高效、且更具有实际意义的体系化解决方案。
好文章,需要你的鼓励
这款16英寸便携显示器采用分离式设计,包含显示屏和磁吸式支架,均由阳极氧化铝制成。支架采用双铰链设计,支持360度旋转调节,收纳时厚度仅约1.3厘米。FlipAction Pro Gen 1配备2560×1600分辨率、60Hz刷新率、350尼特亮度和100% DCI-P3色域。无需外接电源,可直接从设备取电。适合与iPad配合提升多任务处理效率,或作为Mac的垂直副屏使用。
印度学者在卫星图像识别领域取得突破,设计出无需预训练的神经网络架构,在EuroSAT数据集上达到97.23%准确率。通过三轮迭代优化,研究者发现卫星图像需要平衡空间和光谱两种特征,创新性地开发了可学习融合参数的双路径注意力机制。该方法证明了专用架构设计在特定领域的巨大潜力,为无法获得大规模预训练数据的应用场景提供了有效解决方案。
中兴通讯首席发展官崔丽在经济学人影响力AI创新亚洲2025峰会上分享了智能体AI战略愿景。她强调组织应从机械化向有机化转型,在不确定性中寻求稳定,保持敏捷适应变化。数字化和智能化转型需要长期投资,AI建立在数字和网络基础之上。在关键环节需要人机协同,大模型存在固有风险,而人类具备社会智能和道德判断。智能体AI正在重塑人才战略,未来最重要的三类人才是AI专家、AI高级用户和超越AI的高阶思维人才。
UC伯克利研究团队开发了ECHO框架,通过分析社交媒体上真实用户对GPT-4o图像生成的使用反馈,构建了更贴近实际需求的AI评测体系。该框架收集了超过31000个用户提示词,发现传统评测无法覆盖的复杂任务需求,并识别出用户关心的色彩偏移、身份保持等具体问题,为AI模型评估提供了全新的用户导向思路。