通用大模型可以在100个场景中,解决70%-80%的问题,但未必能100%满足企业某个场景的需求。
预训练模型也就是我们常说的通用大模型,它的训练数据都是大规模低成本获取的,所以通过训练得出的是某种共性能力。目前市场上有非常多的预训练模型,像GPT、LLaMA2等。
预训练模型用学习阶段来类比就好比高中,达到了一个平均水平,但是如果想要在特定领域有更好水平,就需要进一步进修到大学,也就是要在预训练模型上提供更多某领域的知识进行精调训练。
这也是为什么,从今年3月开始国内出现了“百模”大战的原因。《中国人工智能大模型地图研究报告》显示,截至2023年5月底,国内10亿级参数规模以上基础大模型至少已发布79个。2023世界人工智能大会(WAIC2023)上,国内外30余款大模型集中亮相。
“大模型”已经成为业界谈论的高频词,而且也呈现出向垂直领域“小而精”发展的态势。游戏、影视传媒、办公、医疗、金融、电商、广告、ERP、工业、家居等领域已经出现了基于行业大模型的相关应用。
行业大模型参数相对通用大模型更少,在推理和训练上的成本也更低,但是想要让大模型在行业中落地,并不是简单的通用模型加上行业数据就可以实现的。
首先需要将行业中分散的数据集中,其次拥有稳定的训练环境,最后训练上提供高效的算力调度和利用。综合看来不仅要有技术,还要让技术和行业应用场景结合,最后平衡成本、效率和体验,才能真正将行业大模型落地。
本期数字化转型方略也寻找到行业大模型中的参与者,他们分享了自己的行业大模型是如何实现,以及已经落地的场景和案例。同时我们也看到很多企业正在将行业大模型的能力开放出来,让更多的企业可以受惠。
可以预见,未来每一个企业都能拥有属于自己的大模型。
《数字化转型方略》2023年第9期:http://www.zhiding.cn/dxinsight/2309
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。