通用大模型可以在100个场景中,解决70%-80%的问题,但未必能100%满足企业某个场景的需求。
预训练模型也就是我们常说的通用大模型,它的训练数据都是大规模低成本获取的,所以通过训练得出的是某种共性能力。目前市场上有非常多的预训练模型,像GPT、LLaMA2等。
预训练模型用学习阶段来类比就好比高中,达到了一个平均水平,但是如果想要在特定领域有更好水平,就需要进一步进修到大学,也就是要在预训练模型上提供更多某领域的知识进行精调训练。
这也是为什么,从今年3月开始国内出现了“百模”大战的原因。《中国人工智能大模型地图研究报告》显示,截至2023年5月底,国内10亿级参数规模以上基础大模型至少已发布79个。2023世界人工智能大会(WAIC2023)上,国内外30余款大模型集中亮相。
“大模型”已经成为业界谈论的高频词,而且也呈现出向垂直领域“小而精”发展的态势。游戏、影视传媒、办公、医疗、金融、电商、广告、ERP、工业、家居等领域已经出现了基于行业大模型的相关应用。
行业大模型参数相对通用大模型更少,在推理和训练上的成本也更低,但是想要让大模型在行业中落地,并不是简单的通用模型加上行业数据就可以实现的。
首先需要将行业中分散的数据集中,其次拥有稳定的训练环境,最后训练上提供高效的算力调度和利用。综合看来不仅要有技术,还要让技术和行业应用场景结合,最后平衡成本、效率和体验,才能真正将行业大模型落地。
本期数字化转型方略也寻找到行业大模型中的参与者,他们分享了自己的行业大模型是如何实现,以及已经落地的场景和案例。同时我们也看到很多企业正在将行业大模型的能力开放出来,让更多的企业可以受惠。
可以预见,未来每一个企业都能拥有属于自己的大模型。
《数字化转型方略》2023年第9期:http://www.zhiding.cn/dxinsight/2309
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。