ChatGPT仅推出2个月,月活跃用户就已达1亿,半年时间ChatGPT就成为了生成式AI的现象级产品。
在生成式AI的发展中,算力的存在可以说举足轻重。可以看到大模型正在带动AI算力需求超越摩尔定律增长,据统计AI训练任务中的算力增长,每 3.5个月就会翻一倍。
以GhatGPT为例,在预训练算力上,训练一次1,746亿参数的GPT-3模型需要的算力约为 3,640 PFlop/s-day,对应的单次训练成本高达460万美元;日常运营算力上,GhatGPT根据访问量与内容量测算,单月运营算力约4,800PFlop/s-day;调优迭代算力上,每月模型调优带来的算力需求为82.5~137.5 PFlop/s-day。
现阶段,算力作为数字经济时代新的生产力,已成为经济社会高质量发展的重要支撑。工业和信息化部数据显示,我国近年来算力产业年增长率近30%,算力总规模位居全球第二。截至2022年底,我国算力总规模达到180EFLOPS(每秒18000京次浮点运算),算力核心产业规模达到1.8万亿元。
工业和信息化部新闻发言人、总工程师赵志国近日表示,近期通用人工智能的发展对算力提出了更高要求,工业和信息化部将重点从三方面着手:一是持续推动算力基础设施建设;二是聚力推进关键核心技术攻关和产业升级;三是激发算力应用赋能价值。
而且在“百模”大赛下,全球算力需求呈指数级增加,带动了国内AI服务器市场快速增长。本期《数字化转型方略》将和大家聊聊什么样的算力,才能满足大模型千亿数量级的训练需求?AI算力还有哪些发展方向?
总的来说,AI算力的发展已经成为数字经济时代的重要驱动力,无论是芯片厂商、服务器厂商、还是云厂商,他们都在不断地满足着AI算力的需求,推动着AI技术的发展。而对于我们来说,未来是如何用好AI算力,产生创新洞见。
《数字化转型方略》2023年第7期:http://www.zhiding.cn/dxinsight/2307
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。