ChatGPT仅推出2个月,月活跃用户就已达1亿,半年时间ChatGPT就成为了生成式AI的现象级产品。
在生成式AI的发展中,算力的存在可以说举足轻重。可以看到大模型正在带动AI算力需求超越摩尔定律增长,据统计AI训练任务中的算力增长,每 3.5个月就会翻一倍。
以GhatGPT为例,在预训练算力上,训练一次1,746亿参数的GPT-3模型需要的算力约为 3,640 PFlop/s-day,对应的单次训练成本高达460万美元;日常运营算力上,GhatGPT根据访问量与内容量测算,单月运营算力约4,800PFlop/s-day;调优迭代算力上,每月模型调优带来的算力需求为82.5~137.5 PFlop/s-day。
现阶段,算力作为数字经济时代新的生产力,已成为经济社会高质量发展的重要支撑。工业和信息化部数据显示,我国近年来算力产业年增长率近30%,算力总规模位居全球第二。截至2022年底,我国算力总规模达到180EFLOPS(每秒18000京次浮点运算),算力核心产业规模达到1.8万亿元。
工业和信息化部新闻发言人、总工程师赵志国近日表示,近期通用人工智能的发展对算力提出了更高要求,工业和信息化部将重点从三方面着手:一是持续推动算力基础设施建设;二是聚力推进关键核心技术攻关和产业升级;三是激发算力应用赋能价值。
而且在“百模”大赛下,全球算力需求呈指数级增加,带动了国内AI服务器市场快速增长。本期《数字化转型方略》将和大家聊聊什么样的算力,才能满足大模型千亿数量级的训练需求?AI算力还有哪些发展方向?
总的来说,AI算力的发展已经成为数字经济时代的重要驱动力,无论是芯片厂商、服务器厂商、还是云厂商,他们都在不断地满足着AI算力的需求,推动着AI技术的发展。而对于我们来说,未来是如何用好AI算力,产生创新洞见。
《数字化转型方略》2023年第7期:http://www.zhiding.cn/dxinsight/2307
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。