虽然其蕴藏的能量巨大,但我们仍须认真分析最佳应用场景才能为其找到理想的施展平台。医疗保健尤其如此——作为一个向来以变化缓慢著称的领域,任何新兴技术的草率部署都有可能引发巨大风险。大家可能还记得前几年广受关注的IBM Watson,曾经号称能诊断复杂的癌症,但实际情况并非如此。最终,蓝色巨人在去年将其低价卖出。
所以在医疗保健方面,我们不妨以一种简单的五步走方法,评估生成式AI能够为其做出哪些贡献:
1. 从技术能够协助解决的问题入手,搞清楚生成式AI擅长做什么。
2. 搜索存在这些问题的整体领域。
3. 理解在核心用例中使用生成式AI的动机和障碍,包括在接受新方案前人们需要放弃哪些旧办法。
4. 围绕业务动态做优先级评估。
5. 广泛了解建立完整解决方案的必要因素,包括技术、工作流咨询、患者教育等。
要将这套方法应用到医疗保健领域,首先需要明确我们的评估对象——不是能解释医学影像或人口健康数据集的深度学习。这些工作已经在进行当中。另外,我们考虑的也不是AI在特定场景下的简单应用,比如诊断预约。这里的关注点只有一个,生成式AI与新兴医疗保健服务。
首先,生成式AI能帮助解决哪些问题?答案很多,但为了简单起见,我们可以专注于其中四点:1)解释非结构化数据;2)以连贯的方式解释数据;3)让人们参与对话;4)产生新的想法。
第二,这些问题分别对应哪些整体领域?从以上四点出发,我们可以对应出以下示例:
1) 解释非结构化数据:总结电子病历中诊断说明所表达的关键事实,要求医疗保险公司提供预授权,并在临床试验数据中提取模式,例如在患者上报的结果或治疗无效者中找到共性。
2) 以连贯方式解释数据:为医疗保险公司提供客户服务、诊断和制定治疗计划。
3) 让人们参与对话:获取筛查数据(例如,患者在家中感觉安全吗?)并为敏感度较低的健康问题提供谈话治疗。
4) 产生新想法:使用蛋白质组学和基因组学数据集,发现新的有效成分和现有疗法的某些新疗效。
第三,采用新技术的动机和障碍有哪些。这个问题很可能直接决定某些用例能否实际落地。例如,在生成式AI获得FDA批准成为医疗设备之前,任何企业不得借助AI为美国患者提供明确的诊断或制定治疗计划。然而,未来的市场前景可能发生变化。考虑到很多临床医生已经被患者需求压得不堪重负,也许适当放宽监管要求才是可持续发展之道。另外,这部分分析还有助于发现适合快速创新的领域(依赖性低、需求高、风险/转换成本低的领域)。例如,原本自费的谈话疗法现在就有望用AI代劳。
第四,根据业务动态确定不同市场的落地优先级。这个问题非常复杂,本文无法深入讨论。但概括来讲,我们可以通过个体/规模经济、市场渠道、销售流程和竞争强度等因素做出判断。
最后,广泛审视完整的解决方案。很少有哪种新技术能像生成式AI这样,有望彻底改变人们的长期工作实践。例如,生成式AI的广泛普及可能要求对客户做相应培训,并建立起互补产品的生态系统。另外,当竞争对手模仿某些底层医疗技术时,生成式AI还有助于在市场上做产品区分。
总之,如果大家身在医疗保健或生命科学行业,不妨尝试各种方式探索生成式AI的价值。而且与其单从技术入手,不妨关键由此带来的整体挑战,宏观思考我们真正需要怎样的解决方案。之后再据此研究实现方法,看看除了生成式AI之外,有没有哪些门槛更低的成熟方案也能带来类似的效果。
在医疗保健领域,企业级生成式AI正面临着一片广阔的蓝海。而前面提到的五步走方法论,足以表明其中蕴藏的丰富机遇。因此即使是在医疗保健这样一个向来保守的行业,颠覆性的变革也将很快出现。
 0赞
0赞好文章,需要你的鼓励
 推荐文章
                    推荐文章
                  虽然ChatGPT等AI工具正在快速改变世界,但它们并非无所不知的神谕。ChatGPT擅长"令人信服的错误",经常提供有偏见、过时或完全错误的答案。在健康诊断、心理健康、紧急安全决策、个人财务规划、机密数据处理、违法行为、学术作弊、实时信息监控、赌博预测、法律文件起草和艺术创作等11个关键领域,用户应避免完全依赖ChatGPT,而应寻求专业人士帮助。
这项由哥伦比亚大学研究团队完成的突破性研究首次揭示了AI系统自我改进中的"效用-学习张力"问题:系统追求更好性能时会增加复杂度,但过高复杂度会破坏学习能力。研究建立了学习边界定理,提出双门控制机制,为AI安全自我改进提供了理论基础和实用方案,对确保AI技术长期安全发展具有重要意义。
微软重启三里岛核反应堆的协议确认了AI革命与能源现实主义的融合。亚马逊和谷歌也达成类似协议,共同押注核能为AI未来提供最可行的动力路径。到2030年代,数据中心用电量可能媲美大国水平。国际能源署预测全球电力需求到2050年将增长六倍。核电厂90%的容量因子使其独特适合数据中心需求。世界核协会估计,当前全球398GW核能产能必须在2050年前至少增长两倍。
这项由Reactive AI公司Adam Filipek主导的研究提出了反应式变换器(RxT),通过事件驱动架构和固定大小记忆系统,将传统聊天机器人的对话成本从平方级降为线性级,使长期对话成本降低99%以上,同时实现恒定响应速度。实验证明即使12M参数的RxT也显著优于22M传统模型,为高效对话AI开辟新路径。
 
             
                 
                     
                     
                    