虽然其蕴藏的能量巨大,但我们仍须认真分析最佳应用场景才能为其找到理想的施展平台。医疗保健尤其如此——作为一个向来以变化缓慢著称的领域,任何新兴技术的草率部署都有可能引发巨大风险。大家可能还记得前几年广受关注的IBM Watson,曾经号称能诊断复杂的癌症,但实际情况并非如此。最终,蓝色巨人在去年将其低价卖出。
所以在医疗保健方面,我们不妨以一种简单的五步走方法,评估生成式AI能够为其做出哪些贡献:
1. 从技术能够协助解决的问题入手,搞清楚生成式AI擅长做什么。
2. 搜索存在这些问题的整体领域。
3. 理解在核心用例中使用生成式AI的动机和障碍,包括在接受新方案前人们需要放弃哪些旧办法。
4. 围绕业务动态做优先级评估。
5. 广泛了解建立完整解决方案的必要因素,包括技术、工作流咨询、患者教育等。
要将这套方法应用到医疗保健领域,首先需要明确我们的评估对象——不是能解释医学影像或人口健康数据集的深度学习。这些工作已经在进行当中。另外,我们考虑的也不是AI在特定场景下的简单应用,比如诊断预约。这里的关注点只有一个,生成式AI与新兴医疗保健服务。
首先,生成式AI能帮助解决哪些问题?答案很多,但为了简单起见,我们可以专注于其中四点:1)解释非结构化数据;2)以连贯的方式解释数据;3)让人们参与对话;4)产生新的想法。
第二,这些问题分别对应哪些整体领域?从以上四点出发,我们可以对应出以下示例:
1) 解释非结构化数据:总结电子病历中诊断说明所表达的关键事实,要求医疗保险公司提供预授权,并在临床试验数据中提取模式,例如在患者上报的结果或治疗无效者中找到共性。
2) 以连贯方式解释数据:为医疗保险公司提供客户服务、诊断和制定治疗计划。
3) 让人们参与对话:获取筛查数据(例如,患者在家中感觉安全吗?)并为敏感度较低的健康问题提供谈话治疗。
4) 产生新想法:使用蛋白质组学和基因组学数据集,发现新的有效成分和现有疗法的某些新疗效。
第三,采用新技术的动机和障碍有哪些。这个问题很可能直接决定某些用例能否实际落地。例如,在生成式AI获得FDA批准成为医疗设备之前,任何企业不得借助AI为美国患者提供明确的诊断或制定治疗计划。然而,未来的市场前景可能发生变化。考虑到很多临床医生已经被患者需求压得不堪重负,也许适当放宽监管要求才是可持续发展之道。另外,这部分分析还有助于发现适合快速创新的领域(依赖性低、需求高、风险/转换成本低的领域)。例如,原本自费的谈话疗法现在就有望用AI代劳。
第四,根据业务动态确定不同市场的落地优先级。这个问题非常复杂,本文无法深入讨论。但概括来讲,我们可以通过个体/规模经济、市场渠道、销售流程和竞争强度等因素做出判断。
最后,广泛审视完整的解决方案。很少有哪种新技术能像生成式AI这样,有望彻底改变人们的长期工作实践。例如,生成式AI的广泛普及可能要求对客户做相应培训,并建立起互补产品的生态系统。另外,当竞争对手模仿某些底层医疗技术时,生成式AI还有助于在市场上做产品区分。
总之,如果大家身在医疗保健或生命科学行业,不妨尝试各种方式探索生成式AI的价值。而且与其单从技术入手,不妨关键由此带来的整体挑战,宏观思考我们真正需要怎样的解决方案。之后再据此研究实现方法,看看除了生成式AI之外,有没有哪些门槛更低的成熟方案也能带来类似的效果。
在医疗保健领域,企业级生成式AI正面临着一片广阔的蓝海。而前面提到的五步走方法论,足以表明其中蕴藏的丰富机遇。因此即使是在医疗保健这样一个向来保守的行业,颠覆性的变革也将很快出现。
好文章,需要你的鼓励
荷兰公司DuRoBo在CES 2026展示新款电子阅读器Krono,采用智能手机外观设计并内置AI助手。该设备定位为"电子纸专注中心",支持阅读、思考和音乐播放。配备智能转盘便于操作,AI助手Libby可回答问题并支持深度思考。搭载Android 15系统,可访问谷歌应用商店。售价239.99欧元,本月发货。
这项由香港中文大学和AWS团队联合开发的研究推出了TALK2MOVE系统,实现了用自然语言精准操作图片中物体的位置、角度和大小。该系统采用强化学习训练方式,通过空间感知奖励机制和智能步骤采样技术,在移动、旋转、缩放三类操作上的准确率显著超越现有方法,同时大幅降低了对昂贵训练数据的依赖,为AI图像编辑领域带来重要突破。
OpenAI预览了即将推出的ChatGPT Health功能,可帮助用户获取医疗信息。该功能能解释化验结果、制定运动计划、推荐就医问题等。用户可通过B.well平台导入健康记录,与Apple Health等健康应用集成。OpenAI将单独存储医疗数据,采用专用加密和隔离机制保护隐私。功能基于HealthBench数据集开发,包含超过48000个医生编写的评估标准。目前通过等待名单限量测试。
斯坦福大学等知名机构联合研究发现,企业AI助手在执行组织政策时存在严重"偏科"问题:处理允许请求时成功率超95%,但拒绝违规请求时仅13-40%。研究团队开发的COMPASS评估框架通过8个行业5920个测试问题,揭示了AI助手普遍缺乏"拒绝技能"的问题,并提出了针对性训练解决方案。